每日一题(十四):质因数的个数

题目描述
求正整数N(N>1)的质因数的个数。相同的质因数需要重复计算。如120=2*2*2*3*5,共有5个质因数。
输入描述:
可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。
输出描述:
对于每组数据,输出N的质因数的个数。


示例1
输入
120
输出
5

#include<stdio.h>
bool mark[100001];
int prime[100001];
int primesize;
void init() {
	primesize = 0;
	for (int i = 1; i <= 100000; i++)
		mark[i] = false;
	for (int i = 2; i <= 100000; i++) {   //筛选2到100000内所有素数
		if (mark[i] == true)
			continue;
		prime[primesize++] = i;
		if (i >= 1000)
			continue;
		for (int j = i*i; j <= 100000; j += i)
			mark[j] = true;
	}
}
int main() {
	init();
	int n;
	while (scanf("%d", &n) != EOF) {
		int ansprime[30];    //按顺序保存分解出的质因数
		int anssize = 0;     //分解出质因数的个数
		int ansnum[30];      //保存分解出的质因数对应的指数
		for (int i = 0; i < primesize; i++) {  //依次测试每一个素数
			if (n%prime[i] == 0) {
				ansprime[anssize] = prime[i];  //若该素数能整除被分解数,则该素数为其素因数
				ansnum[anssize] = 0;           //初始化幂指数为0
				while (n%prime[i] == 0) {
					ansnum[anssize]++;
					n /= prime[i];
				}
				anssize++;
				if (n == 1)
					break;
			}
		}
		if (n != 1) {   //若测试完2到100000内所有素因数,n仍未被分解至1
							//则剩余的因数一定是n,一个大于100000的素因数
			ansprime[anssize] = n;
			ansnum[anssize++] = 1;
		}
		int ans = 0;
		for (int i = 0; i < anssize; i++)
			ans += ansnum[i];
		printf("%d\n", ans);
		}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值