TensorFlow 笔记(五):模型保存和恢复



保存与读取模型

在使用tf来训练模型的时候,难免会出现中断的情况。这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然下次又要重新开始。好在tf官方提供了保存和读取模型的方法。

保存模型的方法:

# 之前是各种构建模型graph的操作(矩阵相乘,sigmoid等等....)

saver = tf.train.Saver() # 生成saver

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) # 先对模型初始化

    # 然后将数据丢入模型进行训练blablabla

    # 训练完以后,使用saver.save 来保存
    saver.save(sess, "save_path/file_name") #file_name如果不存在的话,会自动创建
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

将模型保存好以后,载入也比较方便,如下所示:

saver = tf.train.Saver()

with tf.Session() as sess:
    #参数可以进行初始化,也可不进行初始化。即使初始化了,初始化的值也会被restore的值给覆盖
    sess.run(tf.global_variables_initializer())     
    saver.restore(sess, "save_path/file_name") #会将已经保存的变量值resotre到 变量中。
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

简单的说,就是通过saver.save来保存模型,通过saver.restore来加载模型。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值