洛谷 3935

题目链接:P3935 Calculating

题目大意: x x x分解质因数的结果为 x = p 1 k 1 p 2 k 2 . . . p n k n x=p_1^{k_1}p_2^{k_2}...p_n^{k_n} x=p1k1p2k2...pnkn,令 f ( x ) = ( x 1 + 1 ) ( x 2 + 1 ) . . . ( x n + 1 ) f(x)=(x_1+1)(x_2+1)...(x_n+1) f(x)=(x1+1)(x2+1)...(xn+1),求 ∑ i = l r f ( i ) \sum _ { i = l } ^ { r }f(i) i=lrf(i) 998244353 998244353 998244353取模的结果。其中 x ≤ 1 0 14 x\leq10^{14} x1014

题目分析: 其实这道题中的 f ( x ) f(x) f(x) 的值就是 x x x的因数个数,所以这道题实际上求的是在 [ l , r ] [l,r] [l,r] x x x 的因数个数的和。 我们首先可以想到的是对于区间 [ l , r ] [l,r] [l,r] 的答案 a n s ans ans 实际上是区间 [ 1 , r ] [1,r] [1,r] 的答案 a n s 1 ans1 ans1 和区间 [ 1 , l − 1 ] [1,l-1] [1,l1] 的答案 a n s 2 ans2 ans2 的差。所以,我们现在要求的就是 ∑ i = 1 r f ( i ) \sum_{i=1}^{r}f(i) i=1rf(i) 的值。不难发现,我们要处理的 ∑ i = 1 r ∑ d ∣ i 1 \sum_{i=1}^r \sum_{d|i}1 i=1rdi1 可以写成
∑ d = 1 r ⌊ n d ⌋ \sum_{d=1}^r⌊\frac{n}{d}⌋ d=1rdn,所以我们只需要处理这个式子即可。对于n/d其实在某些段的值是连续的,这里需要用到分块除法,就是把数值相同的块分成同一组,这样处理后的复杂度变为了 O ( n ) O(\sqrt{n}) O(n ),可以跑过所有的点。下面是完整代码。

题目代码:

#include<stdio.h>
#include<algorithm>
#define mod 998244353
#define LL long long
using namespace std;
LL n,m,ans1,ans2;
int main()
{
  	scanf("%lld %lld",&n,&m);
  	n--;
  	for(LL l=1,r;l<=n;l=r+1){
  		r=n/(n/l);//相当于向上取整 
  		ans1=(ans1+(n/l)%mod*(r-l+1)%mod)%mod;
	}
	for(LL l=1,r;l<=m;l=r+1){
		r=m/(m/l);
		ans2=(ans2+(r-l+1)%mod*(m/l)%mod)%mod;
	}
 	printf("%lld",(ans2-ans1+mod)%mod);
  	return 0; 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值