题目链接: LA-3961-Robotic Sort
题目大意: 为了把工厂中高低不等的物品按从低到高排好序,工程师发明了一种排序机械臂。它遵循一个简单的排序规则,第一次操作找到高度最低的物品的位置
P
1
P_1
P1,并把左起第一个物品至
P
1
P_1
P1间的物品 (即区间
[
1
,
P
1
]
[1,P_1]
[1,P1]间的物品) 反序;第二次找到第二低的物品的位置
P
2
P_2
P2,并把左起第二个至
P
2
P_2
P2 间的物品 (即区间
[
2
,
P
2
]
[2,P_2]
[2,P2]间的物品) 反序……最终所有的物品都会被排好序。
上图给出有六个物品的示例,第一次操作前,高度最低的物品在位置
4
4
4 ,于是把第一至第四的物品反序;第二次操作前,第二低的物品在位罝六,于是把第二至六的物品反序……
你的任务便是编写一个程序,确定一个操作序列,即每次操作前第 i i i 低的物品所在位置 P i P_i Pi,以便机械臂工作。需要注意的是,如果有高度相同的物品,必须保证排序后它们的相对位置关系与初始时相同。
样例输入:
6
3 4 5 1 6 2
4
3 3 2 1
0
样例输出:
4 6 4 5 6 6
4 2 4 4
题目分析:
这道题需要在每次操作时找到区间最小值,但由于会被放到最前面,所以我们可以默认最小值在翻转后被删除,所以要维护的就是全局最小值和全局最小值的位置(注意要把删掉的数加回去),因为有可能有相同的数,而题目要求相同的数要把在原序列中先出现的排在后出现的前面,因此可以先处理一下保证每个位置的数字值不相同,然后再加一个找最小值位置的函数
f
i
n
d
find
find_
m
i
n
min
min _
p
o
s
pos
pos,翻转操作就是常规的操作了。代码如下:
题目代码:
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<time.h>
#define mxn 100005
using namespace std;
int rt,sz;
struct Arr{
int val,pos,_val;
}arr[mxn];
bool cmp(Arr a,Arr b){
if(b.val^a.val)return a.val<b.val;
else return a.pos<b.pos;
}
bool cmp_(Arr a,Arr b){
return a.pos<b.pos;
}
struct Node{
int lson,rson;
int size,val,pri;
int minn,tag;
}T[mxn];
int new_node(int v){
T[++sz].size=1;
T[sz].minn=T[sz].val=v;
T[sz].lson=T[sz].rson=T[sz].tag=0;
T[sz].pri=rand();
return sz;
}
void reverse(int k){
if(!k)return;
swap(T[k].lson,T[k].rson);
T[k].tag^=1;
}
void pushdown(int k){
if(!k)return;
if(T[k].tag){
reverse(T[k].lson);
reverse(T[k].rson);
T[k].tag=0;
}
}
void pushup(int k){
if(!k)return;
T[k].size=T[T[k].lson].size+T[T[k].rson].size+1;
if(T[k].lson&&T[k].rson)
T[k].minn=min(T[k].val,min(T[T[k].lson].minn,T[T[k].rson].minn));
if(!T[k].lson&&T[k].rson)
T[k].minn=min(T[k].val,T[T[k].rson].minn);
if(!T[k].rson&&T[k].lson)
T[k].minn=min(T[k].val,T[T[k].lson].minn);
if(!T[k].lson&&!T[k].rson)
T[k].minn=T[k].val;
}
void split(int now,int k,int &x,int &y){
if(!now){x=y=0;return;}
else{
pushdown(now);
if(k<=T[T[now].lson].size)
y=now,split(T[now].lson,k,x,T[now].lson);
else x=now,split(T[now].rson,k-T[T[now].lson].size-1,T[now].rson,y);
pushup(now);
}
}
int merge(int x,int y){
if(!x||!y)return x+y;
if(T[x].pri<T[y].pri){
pushdown(x);
T[x].rson=merge(T[x].rson,y);
pushup(x);
return x;
}
else{
pushdown(y);
T[y].lson=merge(x,T[y].lson);
pushup(y);
return y;
}
}
int build(int l,int r){
if(l==r)return new_node(arr[l]._val);
int mid=(l+r)>>1;
int x=build(l,mid),y=build(mid+1,r);
return merge(x,y);
}
void DFS(int k){
if(!k)return;
pushdown(k);
DFS(T[k].lson);
printf("%d ",T[k].val);
DFS(T[k].rson);
}
int find_min_pos(int k,int v){
if(!k)return 0;
pushdown(k);
if(T[T[k].lson].minn==v)
return find_min_pos(T[k].lson,v);
else if(T[k].val==v)return T[T[k].lson].size+1;
else if(T[T[k].rson].minn==v)
return find_min_pos(T[k].rson,v)+T[T[k].lson].size+1;
}
int main()
{
srand(time(0));
int n,bf=0;
while(scanf("%d",&n)&&n){
sz=0;rt=0;
for(int i=1;i<=mxn-5;i++)
T[i].minn=0x7ffffff;
for(int i=1;i<=n;i++){
scanf("%d",&arr[i].val);
arr[i].pos=i;
}
sort(arr+1,arr+n+1,cmp);
for(int i=1;i<=n;i++)arr[i]._val=i;
sort(arr+1,arr+n+1,cmp_);
rt=build(1,n);
for(int i=1;i<=n;i++){
int x,y,z;
int pos=find_min_pos(rt,T[rt].minn);
if(i^n)printf("%d ",pos+i-1);
else printf("%d\n",pos+i-1);
split(rt,pos,x,y);
split(x,pos-1,x,z);
reverse(x);
rt=merge(x,y);
}
}
return 0;
}