bzoj2819 NIM 树上两点间抑或值

       这道题目名字叫NIM实际上和博弈论几乎一点关系都没有o(╯□╰)o。题意:带修改的求树上两点间抑或值,不为0输出"Yes"否则输出"No"。

       如果我们用f[x]表示x到根节点的抑或值的话题目就转化为求f[x]^f[y]^a[lca(x,y)],这样就给我们修改提供了一种可能,因为修改一个x只会对x的子树中的点产生影响,即有f[z]^=v(v为修改的值且z为x子树中包括x一点)。首先对树进行一遍dfs,遍历到一个点就记下来。这样可以预处理以x为根的子树的起始标号l[x]与结束标号r[x],l[x]即为x的编号,记一个数组t[x]。那么如果要修改x为v,只要将t[l[x]]先抑或a[x]再抑或v,t[r[x]+1]先抑或a[x]再抑或v,最后将a[x]作修改即可。那么如果令f[x]=t[1]^t[2]^...^t[l[x]],则只有x子树作了修改,其余的都不变。

       这样就能写出代码了,还是很简单的:

#include<iostream>
#include<cstdio>
#define N 500005
using namespace std;

int n,m,tot,dfsclk,fst[N],pnt[N*2],nxt[N*2];
int bin[20],fa[N][20],d[N],a[N],c[N],l[N],r[N];
int read(){
	int x=0; char ch=getchar();
	while (ch<'0' || ch>'9') ch=getchar();
	while (ch>='0' && ch<='9'){ x=x*10+ch-'0'; ch=getchar(); }
	return x;
}
void add(int aa,int bb){
	pnt[++tot]=bb; nxt[tot]=fst[aa]; fst[aa]=tot;
}
void dfs(int x){
	int i,p; l[x]=++dfsclk;
	for (i=1; bin[i]<=d[x]; i++) fa[x][i]=fa[fa[x][i-1]][i-1];
	for (p=fst[x]; p; p=nxt[p]){
		int y=pnt[p]; if (y==fa[x][0]) continue;
		d[y]=d[x]+1; fa[y][0]=x; dfs(y);
	}
	r[x]=dfsclk;
}
int lca(int x,int y){
	if (d[x]<d[y]) swap(x,y);
	int tmp=d[x]-d[y],i;
	for (i=0; i<=18; i++) if (tmp&bin[i]) x=fa[x][i];
	for (i=18; i>=0; i--) if (fa[x][i]!=fa[y][i]){
		x=fa[x][i]; y=fa[y][i];
	}
	return (x==y)?x:fa[x][0];
}
void mdy(int x,int y){
	int i; for (i=x; i<=n; i+=i&(-i)) c[i]^=y;
}
int getnim(int x){
	int sum=0,i; for (i=x; i; i-=i&(-i)) sum^=c[i]; return sum;
}
int main(){
	n=read(); int i;
	for (i=1; i<=n; i++) a[i]=read();
	for (i=1; i<n; i++){
		int x=read(),y=read(); add(x,y); add(y,x);
	}
	bin[0]=1; for (i=1; i<=19; i++) bin[i]=bin[i-1]<<1;
	dfs(1); int m=read(); char ch;
	for (i=1; i<=n; i++){ mdy(l[i],a[i]); mdy(r[i]+1,a[i]); }
	while (m--){
		ch=getchar(); while (ch!='Q' && ch!='C') ch=getchar();
		if (ch=='C'){
			int x=read(),y=read();
			mdy(l[x],a[x]^y); mdy(r[x]+1,a[x]^y); a[x]=y;
		} else{
			int x=read(),y=read(),tmp=lca(x,y);
			puts((getnim(l[x])^getnim(l[y])^a[tmp])?"Yes":"No");
		}
	}
	return 0;
}

by lych

2015.12.5

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权为 $a_x+a_y$,求所有满足条件的路径中,所有点的权和的最小。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权和的最小数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权求出来,然后将其看作是一个有权的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权和的最小。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权和的最小,然后再将这个加上当前节点的权,就可以得到从根节点到当前节点的路径中,所有点的权和的最小。 时复杂度 树形dp的时复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权和为 $s$ 的最小,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权。 时复杂度 动态规划的时复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值