bzoj3517 翻硬币 数学

       这道题网上似乎并没有找到题解啊,唉只能自己想了。

       显然每个点只用翻一次,记x(i,j)表示(i,j)这一个翻不翻,同时记a(i,j)表示这一个的初始情况。简单推理可以发现全翻成0和全翻成1的方法刚好是互补的,换句话说只要求除了翻成0的步数,翻成1的步数也就可以求出来了。下面求翻成0的步数。

       考虑(i,j),对它有影响的是纵坐标为j的x(u,j)和横坐标为i的x(i,v),根据它最后为0可以得到一个方程:

       x(1,j)^x(2,j)^...^x(n,j)^x(i,1)^...^x(i,j-1)^x(i,j+1)^...^x(i,n)^a(i,j)=0,注意左边x(i,j)只能出现一次,将a(i,j)移项得到:x(1,j)^x(2,j)^...^x(n,j)^x(i,1)^...^x(i,j-1)^x(i,j+1)^...^x(i,n)=a(i,j),记为等式f(i,j)。显然有n^2个变量和n^2个方程,所以其有唯一解。下面来解这个方程。

      将f(i,j)与所有横坐标=i的和纵坐标=j的f()抑或,推理一下可以发现,由于n是偶数,左边只剩下了x(i,j),右边则是所有横坐标=i和纵坐标=j的a()的抑或值。所以就可以把x(i,j)求出来了。

虽然讲了这么多,但是代码还是很短的:

#include<iostream>
#include<cstdio>
using namespace std;

int n,a[1005][1005],sum1[1005],sum2[1005];
char ch[1005];
int main(){
	scanf("%d",&n); int i,j;
	for (i=1; i<=n; i++){
		scanf("%s",ch+1);
		for (j=1; j<=n; j++){
			a[i][j]=ch[j]-'0';
			sum1[i]^=a[i][j]; sum2[j]^=a[i][j];
		}
	}
	int ans=0;
	for (i=1; i<=n; i++)
		for (j=1; j<=n; j++) ans+=sum1[i]^sum2[j]^a[i][j];
	printf("%d\n",min(ans,n*n-ans));
	return 0;
}

by lych

2015.12.20


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值