给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。
例如,从根到叶子节点路径 1->2->3 代表数字 123。
计算从根到叶子节点生成的所有数字之和。
说明: 叶子节点是指没有子节点的节点。
示例 1:
输入: [1,2,3]
1
/ \
2 3
输出: 25
解释:
从根到叶子节点路径 1->2 代表数字 12.
从根到叶子节点路径 1->3 代表数字 13.
因此,数字总和 = 12 + 13 = 25.
示例 2:
输入: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
输出: 1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495.
从根到叶子节点路径 4->9->1 代表数字 491.
从根到叶子节点路径 4->0 代表数字 40.
因此,数字总和 = 495 + 491 + 40 = 1026.
一、思路
(1)求出所有根到叶节点的路径上的数
(2)将(1)中得到的数累加起来
求解(1)可以使用先序、中序、后序遍历
C++代码:
class Solution {
public:
vector<int> sums;
int sumNumbers(TreeNode* root) {
if(!root)
return 0;
int ans = 0;
preOrder(root, 0);
for (int i = 0; i < sums.size(); i++)
ans += sums[i];
return ans;
}
void preOrder(TreeNode* root, int pre_sum) {
int sum = pre_sum * 10 + root->val;
if (!root->left && !root->right) {
sums.push_back(sum);
return;
}
if (root->left)
preOrder(root->left, sum);
if (root->right)
preOrder(root->right, sum);
return;
}
};