给定无向连通图中一个节点的引用,返回该图的深拷贝(克隆)。图中的每个节点都包含它的值 val(Int) 和其邻居的列表(list[Node])。
示例:
输入:
{"$id":"1","neighbors":[{"$id":"2","neighbors":[{"$ref":"1"},{"$id":"3","neighbors":[{"$ref":"2"},{"$id":"4","neighbors":[{"$ref":"3"},{"$ref":"1"}],"val":4}],"val":3}],"val":2},{"$ref":"4"}],"val":1}
解释:
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
提示:
- 节点数介于 1 到 100 之间。
- 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
- 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
- 必须将给定节点的拷贝作为对克隆图的引用返回。
一、思路
(一)深度优先搜索
使用map将图中的val与图节点一一对应起来,每次需要填入新创建的节点的邻居时,就从map表中寻找,找不到时则递归地生成新的节点
C++代码:
class Solution {
public:
map<int,Node*> list;
Node* cloneGraph(Node* node) {
if (node == NULL)
return NULL;
Node* new_node = new Node(node->val, vector<Node*>(node->neighbors.size(), NULL));
list.insert(map<int, Node*>::value_type(new_node->val, new_node));
for (int i = 0; i < new_node->neighbors.size(); i++) {
if (list.count(node->neighbors[i]->val) > 0)
new_node->neighbors[i] = list[node->neighbors[i]->val];
else
new_node->neighbors[i] = cloneGraph(node->neighbors[i]);
}
return new_node;
}
};