不容易系列之(3)―― LELE的RPG难题------[NWPU][2018寒假作业][通用版]一、热身 [Cloned]D题

人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即”可乐”),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,n大于0小于等于50。
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
Sample Input
1
2
Sample Output
3
6

解题思路:
如果有n个方格,当对第n个方格填色时,有两种情况:
1)应该已经对前面n-1个方格填好了色,有f(n-1)种情况,此时第n-1个跟第一个颜色一定不一样,所以第n个只有一种选择,所以是f(n-1)。
2)对前面n-2个方格填好色,有f(n-2)种情况,第n-1个空格颜色跟第一个颜色一样(否则就成了上面那种情况了),只有一种可能,最后第n个方格可以填两种颜色(因为n-1和1是第同种颜色),所以是2*f(n-2)。

所以有递推公式:f(n)=f(n-1)+2(n-2),n>=4。

#include<stdio.h>
#include<iostream>
using namespace std;

int main()
{
    int i,n;
    long long int result[60];
    result[1]=3;
    result[2]=6;
    result[3]=6;

    while(scanf("%d",&n)!=EOF)
    {
        for(i=4;i<=n;i++)
        {
            result[i]=result[i-1]+result[i-2]*2;
        }
        cout<<result[n]<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值