lettcode算法题打卡——day05

这篇博客探讨了如何计算二叉树的最大深度,分别通过深度优先搜索和广度优先搜索两种方法进行实现,并分析了它们的时间和空间复杂度。此外,还介绍了验证二叉搜索树的有效性,提供了一种递归和中序遍历的解决方案。文章深入浅出地讲解了这两种重要的树形结构问题。
摘要由CSDN通过智能技术生成

二叉树的最大深度

给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

返回它的最大深度 3 。

思路:

方法一:深度优先搜索

如果我们知道了左子树和右子树的最大深度 ll 和 rr,那么该二叉树的最大深度即为max(l,r)+1

public int maxDepth(TreeNode root) {
        if(root == null){
            return 0;
        }else{
            int leftHeight = maxDepth(root.left);
            int rightHeight = maxDepth(root.right);
            return Math.max(leftHeight,rightHeight) + 1;
        }
    }

复杂度分析

时间复杂度:O(n)O(n),其中 nn 为二叉树节点的个数。每个节点在递归中只被遍历一次。

空间复杂度:O(\textit{height})O(height),其中 \textit{height}height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

方法二:广度优先搜索

我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量 ans 来维护拓展的次数,该二叉树的最大深度即为 ans。

class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        int ans = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size > 0) {
                TreeNode node = queue.poll();
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
                size--;
            }
            ans++;
        }
        return ans;
    }
}

复杂度分析

时间复杂度:O(n)O(n),其中 nn 为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。

空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到 O(n)O(n)。

验证二叉搜索树


给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true


示例 2:

 输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

思路:


方法一: 递归

我们设计一个递归函数 helper(root, lower, upper) 来递归判断,函数表示考虑以 root 为根的子树,判断子树中所有节点的值是否都在 (l,r)(l,r) 的范围内(注意是开区间)。如果 root 节点的值 val 不在 (l,r)(l,r) 的范围内说明不满足条件直接返回,否则我们要继续递归调用检查它的左右子树是否满足,如果都满足才说明这是一棵二叉搜索树。

那么根据二叉搜索树的性质,在递归调用左子树时,我们需要把上界 upper 改为 root.val,即调用 helper(root.left, lower, root.val),因为左子树里所有节点的值均小于它的根节点的值。同理递归调用右子树时,我们需要把下界 lower 改为 root.val,即调用 helper(root.right, root.val, upper)。

class Solution {
public:
    bool helper(TreeNode* root, long long lower, long long upper) {
        if (root == nullptr) {
            return true;
        }
        if (root -> val <= lower || root -> val >= upper) {
            return false;
        }
        return helper(root -> left, lower, root -> val) && helper(root -> right, root -> val, upper);
    }
    bool isValidBST(TreeNode* root) {
        return helper(root, LONG_MIN, LONG_MAX);
    }
};

方法2 中序遍历

中序遍历时,判断当前节点是否大于中序遍历的前一个节点,如果大于,说明满足 BST,继续遍历;否则直接返回 false。

class Solution {
    long pre = Long.MIN_VALUE;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        // 访问左子树
        if (!isValidBST(root.left)) {
            return false;
        }
        // 访问当前节点:如果当前节点小于等于中序遍历的前一个节点,说明不满足BST,返回 false;否则继续遍历。
        if (root.val <= pre) {
            return false;
        }
        pre = root.val;
        // 访问右子树
        return isValidBST(root.right);
    }
}

摘自:98. 验证二叉搜索树 - 力扣(LeetCode) (leetcode-cn.com)

初级算法 - LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台 (leetcode-cn.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值