自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(88)
  • 资源 (21)
  • 论坛 (1)
  • 收藏
  • 关注

原创 【用Python学习Caffe】0. 前言及介绍

0.前言及介绍老实说现在的Caffe已经不够流行了(说到这里,我有点无力了,近年来深度学习发展实在是太快了,完全跟不上学习脚步了,刚刚Caffe有点了解后,马上就要跟不上时代了=_=||)。如果对于现在的我来说,我更愿意推荐去学习Tensorflow或者是Pytorch,甚至是Caffe2。因为这些框架都有大公司参与开发,相关的学习资料更全,前段时间刚上手Tensorflow,个人感觉开发起来要比C

2017-06-22 21:50:15 9640 2

原创 【深度剖析HMM(附Python代码)】1.前言及隐马尔科夫链HMM的背景

1. 前言隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别、文本翻译、序列预测、中文分词等多个领域。虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐渐变得不怎么流行了,但并不意味着完全退出应用领域,甚至在一些轻量级的任务中仍有应用。本系列博客将详细剖析隐马尔科夫链HMM模型,同以往网络上绝大多数教程不同,本系列博客将更深入地分析HMM,不仅包括

2017-04-27 12:24:50 49531 9

原创 编写C语言版本的卷积神经网络CNN之一:前言与Minst数据集

卷积神经网络是深度学习的基础,但是学习CNN却不是那么简单,虽然网络上关于CNN的相关代码很多,比较经典的是tiny_cnn(C++)、DeepLearnToolbox(Matlab)等等,但通过C语言来编写CNN的却比较少,本人因为想在多核DSP下运行CNN,所以便尝试通过C语言来编写,主要参考的代码是DeepLearnToolbox的内容,DeepLearnToolbox是用Matlab脚本编写,是我看过的最为简单的CNN代码,代码清晰,阅读方便,非常适合新手入门学习。 本文的CNN代码是

2016-06-29 22:12:07 54976 43

原创 (多核DSP快速入门)0.前言+CCS的安装

多核DSP的快速入门,CCSv5的学习,DSP教程

2016-04-25 22:40:10 12683 1

原创 强化学习从PG到PPO(基于百度飞桨PaddlePaddle+PARL)

前段时间抽空学习了《百度强化学习基础课程》强化学习7日打卡营-世界冠军带你从零实践,总共七天的视频+线上作业(视频地址:世界冠军带你从零实践强化学习),让我这个小白基本对于强化学习有了简单的理解,知识虽然是灌进脑袋里,但仍是一团浆糊,本篇文章整理了自己的对于课程的理解,以及自己的发散和思考,从最简单的PG算法,到现在流行的PPO算法。PG算法原理PG算法即是基于策略(Policy-based),不同于Value-based的算法的Q函数,其是直接优化策略函函数,在深度强化学习中,其一般是采用神经网络

2020-07-24 11:59:12 169

原创 【用Python学习Caffe】8. 网络结构的权重共享量化

8. 网络结构的权重共享量化网络权重共享量化也是一类重要的网络压缩方法,其本质在于先通过聚类方法得到该层权重的聚类中心,然后通过聚类中心值来表示原权重值。因此权重值并不是由32位的浮点数来表示,而是由其对应的聚类中心的序号表示,如果聚类级别为8位,此时权重值只需要用8位就能表示。对于网络权重量化也有三个问题:量化级别的确定,同修剪率一样,可以通过试错的试验的方法来确定量化后网络重新训练问题量化

2017-06-22 22:28:01 5192 5

原创 【用Python学习Caffe】7. 网络结构的修剪

7. 网络结构的修剪网络结构的压缩是近年来研究热点,接下来的两节,我们将介绍Deep Compression的两个策略网络修剪和网络权重共享量化的实现方法,我们通过mnist的LeNet5作为例子,而其他网络的实现也是类似的。关于Deep Compression的原理,可以参见其论文:Han S, Mao H, Dally W J. Deep compression: Compressing dee

2017-06-22 22:23:06 6774 8

原创 【用Python学习Caffe】6. 权重预设、预训练及微调

6. 权重预设、预训练及微调通过上一节,我们将得到solver文件,得到该文件后,进行网络的训练及测试将变得非常简单。 在通过solver = caffe.SGDSolver(solver_proto)初始化解决器后,训练一般有两种方式,一是通过solver.solve()直接进行训练,二是通过solver.step(1)进行单步训练。6.1 solver直接训练及单步训练 if i

2017-06-22 22:19:16 4470

原创 【用Python学习Caffe】5. 生成solver文件

5. 生成solver文件网络训练一般是通过solver来进行的。对于caffe来说,其是通过solver文件来生成solver训练器进行网络训练及测试的,该solver文件中包含了训练及测试网络的配置文件的地址,及相关训练方法及一些训练的超参数,该文件一般不是很大,可以直接在一些solver.prototxt文件上更改。也可以通过Python结合caffe_pb2.SolverParameter(

2017-06-22 22:17:28 2979

原创 【用Python学习Caffe】4. 设计自己的网络结构

4. 设计自己的网络结构通过前文的例子,我们都知道了Caffe的网络都是一个prototxt的网络结构配置文件定义的,该文件可以用文本工具打开,打开后,我们可以看到如下结构: layer { name: "data" type: "Data" top: "data" top: "label" transform_param {

2017-06-22 22:15:50 4057

原创 【用Python学习Caffe】3. 图像训练测试数据集LMDB的生成

3. 图像训练测试数据集LMDB的生成Caffe深度学习网络在训练和测试中所使用的的数据集,并不是一张张的图像,而将图像集打包成LMDB或者LevelDB的数据库形式,这样做好处是能提高读取图像的时间。而本节的目的在于介绍如何将图像数据生成可用于测试和训练LMDB格式的数据集。3.1 原始图像的采集可以通过爬虫等方法从互联网中获得许多张图像(图像格式不限,JPG或者PNG都是可以的) 然后将所有图

2017-06-22 22:12:38 5499

原创 【用Python学习Caffe】2. 使用Caffe完成图像目标检测

2. 使用Caffe完成图像目标检测本节将以一个快速的图像目标检测网络SSD作为例子,通过Python Caffe来进行图像目标检测。 必须安装windows-ssd版本的Caffe,或者自行在caffe项目中添加SSD的新增相关源代码.图像目标检测网络同图像分类网络的大体原理及结构很相似,不过原始图像再经过深度网络后,并不是得到一组反映不同分类种类下概率的向量,而得到若干组位置信息,其反映不

2017-06-22 22:08:21 7857 1

原创 【用Python学习Caffe】1. 使用Caffe完成图像分类

1. 使用Caffe完成图像分类本节将以著名的图像分类深度学习网络AlexNet为例子,通过Python Caffe来进行图像分类。虽然不同的网络的结构是不样的,但其大体的过程都是一致的,因此大家可以通过这个例子,熟悉如何利用Caffe进行图像分类。关于AlexNet的原理,可以参见其论文:Krizhevsky A, Sutskever I, Hinton G E. Imagenet classif

2017-06-22 22:01:47 8440 5

原创 【深度剖析HMM(附Python代码)】4.HMM代码测试及hmmlearn介绍

相信经过上几节的说明,大家对于HMM应该有比较好的了解,也许大家已经自己试着运行代码了。这一节主要介绍下另一个著名的HMM的Python库——hmmlearn,这个库提供了三个HMM模型(高斯HMM、离散HMM及高斯混合HMM),比我的代码速度更快,而且更有稳定,而且其还提供了相应的教程和API函数说明:http://hmmlearn.readthedocs.io/en/latest/inde

2017-04-27 14:35:54 11162 1

原创 【深度剖析HMM(附Python代码)】3.隐马尔科夫链所解决的问题

通过隐马尔科夫链,有以下几方面功能:1. 解码问题 已知某一序列,找到最可能的隐藏状态序列(即所谓的解码问题,利用维比特算法来解决)解码过程的相关python代码 def decode(self, X, istrain=True): """ 利用维特比算法,已知序列求其隐藏状态值 :param X

2017-04-27 13:51:53 4749 1

原创 【深度剖析HMM(附Python代码)】2.隐马尔科夫链HMM的EM训练过程

隐马尔科夫链HMM的参数θ的EM训练过程现在回到前一节最后提出的参数θ的最大似然函数上来,先对其做个对数变换,做对数变换是考虑到序列X的概率计算公式中包含了连乘,为了方便计算同时避免序列X的概率过小,因此对其做了对数变换。的期望计算中,对于序列X是已知的,而的概率是由旧参数值 所估计的,因此上式可以表示为:为了方便表示,以下定义:而可以表示为:

2017-04-27 13:28:43 7837 6

原创 【机器学习算法笔记】7. 基于信息论的网络

【机器学习算法笔记】7. 基于信息论的网络根据最大互信息原则作为网络的最优化目标函数。7.1 最大互信息原则(相关) (a) (b) (c) (d)7.2 信息论相关定义7.2.1 信息量7.2.2 熵(微分熵) 最大熵原则:当根据不完整的信息作为依据进行推断时,应该由满足分布限制条件的具有最大熵的概率分布推得。 7.2.3 互信息 上面分别表示X,Y的联

2017-03-29 17:55:22 1585

原创 【机器学习算法笔记】6. 降维与主分量分析(PCA)

【机器学习算法笔记】6. 降维与主分量分析(PCA)6.1 PCA算法特征选择问题是指将数据空间变换到特征空间,我们希望设计一种变换使得数据集由维数较少的有效特征来表示。 PCA是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。 通俗的理解,如果把所有的点都映射到一

2017-03-29 10:35:43 3104

原创 【机器学习算法笔记】5. 自组织映射SOM

【机器学习算法笔记】5. 自组织映射SOM自组织映射是一类非监督学习算法 自组织原则:1、自增强:如果两个神经元是同时激活的,则突触强度会选择性地增强;如果是异步激活的,突触强度会减弱2、竞争原则:可用资源的局限使得最强健增长的突触是以其他神经元作为代价的3、协作:在神经元级别中,对突触权值的修改趋于互相合作。4、结构化信息:在一个输入信号中存在的潜在次序和结构代表了冗余信息,其通过自组织

2017-03-29 10:14:38 3464 1

原创 【机器学习算法笔记】4. 支持向量机(SVM)

【机器学习算法笔记】4. 支持向量机(SVM)给定训练样本,支持向量机建立一个超平面作为决策曲面,使得正例和反例之间的隔离边缘最大化4.1 线性模型考虑到用于分离超平面的决策曲面: x到超平面的距离: 现在我们考虑到要寻找一个超平面,使得全体x到超平面的距离都大于1:(这里d=1或-1) (这里可以看出,d取1或-1和d取2或-2是一样,在是用于分割超平面的两半) 并且满足

2017-03-29 10:01:17 1440

原创 【机器学习算法笔记】3. 核方法和径向基(RBF网络)

【机器学习算法笔记】3. 核方法和径向基(RBF网络)在涉及非线性可分模式分类中,多层感知器是通过神经元的非线性来达到的,这个非线性主要是通过使用Sigmoid函数来获得的。 这一节介绍另一种通过混合方式来解决非线性可分模式问题: 1、将给定非线性集合转换为线性集合 2、通过最小二乘估计来解决线性分类问题。 这个两段方法被称为核方法。3.1 核方法核方法的原理(模式可分性的Cover定理):

2017-03-28 19:49:37 1211

原创 【机器学习算法笔记】2. 学习算法与最小均方算法(LMS)

【机器学习算法笔记】2. 学习算法与最小均方算法(LMS)最小均方算法是一个非常流行的在线学习算法。其是建立在自适应滤波和自适应调整权重上的。2.1 迭代下降思想三种以迭代下降思想为基础的无约束最优化方法:2.1.1 最速下降法:在最速下降法中,对权值向量的调整是在最速下降的方向进行的,即它是与梯度向量方向相反的,梯度向量记为: 最速下降法一般表示为: 其原理是根据一阶泰勒展开式:

2017-03-28 19:36:42 2023

原创 【机器学习算法笔记】1. 回归器模型

【机器学习算法笔记】1. 回归器模型回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。常见的回归算法包括:最小二乘法(线性回归),逻辑回归,逐步式回归,多元自适应回归样条等。1.1 线性回归器所谓线性回归:对于一组输入值X=[x1,x2,…,xn],存在输出y,为了代表输入与输出的函数关系,假定输出估计 线性回归器所要求的问题: 一元线性回归

2017-03-28 19:15:52 4468

原创 【机器学习算法笔记】0. 机器学习算法分类

【机器学习算法笔记】0. 机器学习算法分类0.1 凸优化问题凸优化是指一种比较特殊的优化,是指求取最小值的目标函数为凸函数的一类优化问题。其中,目标函数为凸函数且定义域为凸集的优化问题称为无约束凸优化问题。而目标函数和不等式约束函数均为凸函数,且定义域为凸集的优化问题为约束优化问题。 凸优化问题的特性:1、凸问题的局部最优解就是全局最优解。2、许多非凸问题通过一定的手段可以化归为凸问题。3、

2017-03-28 18:42:20 2064

原创 【C++研发面试笔记】22. 常用算法-字符串查找算法

22. 常用算法-字符串查找算法22.1 KMP算法,KMP字符串匹配算法,BM算法,Rabin-Karp算法,有限自动机算法,Boyer-Moore字符串搜索算法。KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore)

2016-10-04 13:36:31 2693

原创 【C++研发面试笔记】21. 常用算法-STL中常用算法函数

【C++研发面试笔记】21. 常用算法-STL中常用算法函数1、for_each(容器起始地址,容器结束地址,要执行的函数) 指定函数依次对指定范围内所有元素进行迭代访问,返回所指定的函数类型。2、查找find InputIterator find (InputIterator first, InputIterator last, const T& val); 前闭后合的区间 begin,en

2016-10-04 11:24:17 1306

原创 【C++研发面试笔记】20. 常用算法-路径搜索算法(图算法)

【C++研发面试笔记】20. 常用算法-路径搜索算法(图算法)20.1 BFS与DFS最大流最小割定理,最大流问题,最小生成树问题,Prim算法,Dijkstra算法是典型的单源最短路径算法。Floyd-Warshall算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。Bellman-Ford算法是求含负权图的单源最短路径算法。SPFA算法

2016-10-04 11:19:10 7341

原创 【C++研发面试笔记】19. 常用算法-排序算法

【C++研发面试笔记】19. 常用算法-排序算法19.1 排序算法分类比较排序和非比较排序: 常见的排序算法都是比较排序,非比较排序包括计数排序、桶排序和基数排序,非比较排序对数据有要求,因为数据本身包含了定位特征,所有才能不通过比较来确定元素的位置。 比较排序的时间复杂度通常为O(n^2)或者O(nlogn),比较排序的时间复杂度下界就是O(nlogn),而非比较排序的时间复杂度可以达到O(n

2016-10-03 23:12:04 2988 1

原创 【C++研发面试笔记】18. 常用算法-查找算法

【C++研发面试笔记】18. 常用算法-查找算法查找算法一般是跟排序算法相关,本节主要介绍五类常用查找算法。其中,顺序查找是纯粹的查找方法,二分查找是依据已排序序列进行的快速查找方法,后三种都多少涉及到先排序再查找的策略。18.1 顺序查找算法顺序查找没有什么特别之处,就是从头到尾搜索一遍,算法复杂度为O(n)。18.2 二分查找算法二分查找算法又名折半查找,原理就是二分法,其一般针对于顺序排列的数

2016-10-03 21:40:27 919

原创 【C++研发面试笔记】17. 基本数据结构-图结构

【C++研发面试笔记】17. 基本数据结构-图结构17.1 拓扑排序17.1.1 拓扑排序定义对有向无环图G进行拓扑排序,是指将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。这样的线性序列称为满足拓扑次序的序列,简称拓扑序列。得到这个该集合上的一个全序序列(即所有的顶点都在序列中)的操作称之为拓扑排序。排序结果不唯一。17.1.2

2016-10-03 21:24:45 747

原创 【C++研发面试笔记】16. 基本数据结构-队列queue与栈stack

【C++研发面试笔记】16. 基本数据结构-队列queue与栈stack16.1 STL中stack实现stack 模板类的定义在头文件中。栈中的数据是先进后出的(First In Last Out, FILO)。栈只有一个出口,允许新增元素(只能在栈顶上增加)、移出元素(只能移出栈顶元素)、取得栈顶元素等操作。 stack 模板类需要两个模板参数,一个是元素类型,一个容器类型,但只有元素类型是必

2016-10-03 21:01:22 1014

原创 【C++研发面试笔记】15. 基本数据结构-字符串string

【C++研发面试笔记】15. 基本数据结构-字符串string字符串是一类非常常见的数据结构,本篇主要介绍在STL中的string容器和一些标准库中常用的相关函数。15.1 STL的string#include <string> 在标准 C++ 中,字符串类 string 由 C++ STL 实现,提供丰富的字符串的处理功能。string 是一个基于字符的序列容器,具有vector向量容器一样的内

2016-10-03 19:12:28 1012

原创 【C++研发面试笔记】14. 基本数据结构-查找表与并查集

【C++研发面试笔记】14. 基本数据结构-查找表与并查集,Hash表,哈希表、STL,set, map, unordered_map, unordered_set

2016-10-03 18:47:15 1215

原创 【C++研发面试笔记】13. 基本数据结构-哈夫曼树、树堆及其他树簇

【C++研发面试笔记】13. 基本数据结构-哈夫曼树、树堆及其他树簇,斐波那契堆,van Emde Boas树,字典树,线段树等

2016-10-03 17:50:45 1289

原创 【C++研发面试笔记】12. 基本数据结构-B树簇

【C++研发面试笔记】12. 基本数据结构-B树簇本节所说的B树并不是前面所说的二叉树(Binary Tree),而一类多路搜索树(B-Tree),其是为了解决二叉树只有两路的情况而提出,广泛应用于文件搜索(比如文件的目录树)。这类树主要分为B-树、B+树、B*树等等。12.1 B-树12.1.1 B-树的结构B-树是一种平衡多路搜索树(并不是二叉的),其特征如下:定义任意非叶子结点最多只有M个儿

2016-10-03 14:13:19 866

原创 【C++研发面试笔记】11. 基本数据结构-红黑树RBT

【C++研发面试笔记】11. 基本数据结构-红黑树RBT上一节,我们提到了为了解决二叉查找树不平衡问题,我们引入了AVL树,AVL是严格平衡树,但在增加或删除节点时,需要非常多的旋转操作。因此这一节我们介绍红黑树,红黑是弱平衡的,用非严格的平衡来换取增删节点时候旋转次数的降低,其在在增加或删除节点时,旋转操作要比AVL树更少;因此当搜索的次数远远大于插入和删除,则选择AVL树,如果搜索,插入删除次数

2016-10-03 12:09:57 2236

原创 【C++研发面试笔记】10. 基本数据结构-平衡二叉搜索树AVL

【C++研发面试笔记】10. 基本数据结构-平衡二叉搜索树AVL10.1 AVL的定义定义:平衡二叉树或为空树,或为如下性质的二叉排序树: (1)左右子树深度之差的绝对值不超过1; (2)左右子树仍然为平衡二叉树. 平衡因子BF=左子树深度-右子树深度. 平衡二叉树每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。10.2 AVL的实现10.2.1 结构10

2016-10-02 21:52:02 1100

原创 【C++研发面试笔记】9. 基本数据结构-二叉查找树BST

【C++研发面试笔记】9. 基本数据结构-二叉查找树BSTBST树即二叉搜索树,其满足如下条件: 1.所有非叶子结点至多拥有两个儿子(Left和Right); 2.所有结点存储一个关键字; 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;9.1 BST树的搜索从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中; 否则如果查询关键字比结点关键字小,就进入

2016-10-02 20:29:31 712

原创 【C++研发面试笔记】8. 基本数据结构-二叉堆

【C++研发面试笔记】8. 基本数据结构-二叉堆最大堆、最小堆分别指堆顶为最大或最小元素的堆,也叫大顶和小顶堆。堆是一种基本的抽象数据类型,一般用二叉树表示并且递归定义,堆顶为树的根,保证树或者子树的根永远比子节点大或者小。 堆的一个经典的实现是完全二叉树。这样实现的堆成为二叉堆。完全二叉树是增加了限定条件的二叉树。假设一个二叉树的深度为n。为了满足完全二叉树的要求,该二叉树的前n-1层必须填满,

2016-10-02 20:14:38 669

原创 【C++研发面试笔记】7. 基本数据结构-单链表

【C++研发面试笔记】7. 基本数据结构-单链表7.1 STL中的ListLists将元素按顺序储存在链表中。与向量(vectors)相比, 它允许快速的插入和删除,但是随机访问却比较慢(其也可以通过[]的方式来访问,不过速度较vector慢了许多)。7.1.1 List相关成员函数/* 插入与删除 */pop_back() //删除最后一个元素 pop_front() //删除第一个元素

2016-10-02 19:56:54 809

ScSPM Matlab原代码

ScSPM Matlab原代码

2016-03-08

SURF Speeded Up Robust Features

SURF算法的经典原文,SURF (Speeded Up Robust Features)也是一种类似于SIFT的兴趣点检测及描述子算法。其通过Hessian矩阵的行列式来确定兴趣点位置,再根据兴趣点邻域点的Haar小波响应来确定描述子,其描述子大小只有64维(也可以扩展到128维,效果更好),是一种非常优秀的兴趣点检测算法。我的博客里面有SURF的算法详解,欢迎相互交流>_<

2015-10-28

基于小波的角点检测方法

Wavelet-based corner detection using eigenvectors of covariance matrices 利用小波和协方差矩阵来检测角点。我的博客里面有关于这些方法的文章,欢迎相互交流。

2015-10-27

ADNN自适应阈值及动态ROS的角点检测方法原文

Curvature Scale Space Corner Detector with Adaptive Threshold and Dynamic Region of Support (2004) 我的博客里面有关于这些方法的文章,欢迎相互交流。

2015-10-27

CPDA角点检测方法

Robust Image Corner Detection Based on the Chord-to-Point Distance Accumulation Technique 我的博客里面有关于这些方法的文章,欢迎相互交流。

2015-10-27

Boundary-based corner detection using eigenvalues of covariance matrices

介绍了基于曲线曲度的角点检测,里面重点介绍通过边缘协方差矩阵来进行曲度计算方法。我的博客里面有关于这些方法的文章,欢迎相互交流。

2015-10-27

Corner detection and curve representation using cubic B-spline

介绍了一种关于样条曲线参数估计的角点检测,里面重点介绍一些B样条曲线的曲度计算方法。我的博客里面有关于这些方法的文章,欢迎相互交流。

2015-10-27

A Simple and Efficient Algorithm for Detection

介绍了早期的基于曲线曲度的角点检测,里面重点介绍一些曲线的曲度计算方法。我的博客里面有关于这些方法的文章,欢迎相互交流。

2015-10-27

Faster and Better A Machine Learning Approach to Corner Detection.pdf

FAST算法原作者在2010年提出的改进算法FAST-ER,提高角点检测的重复率。这里是英文原文。我的博客里有FAST-ER的详解,欢迎相互交流>_<

2015-10-22

Machine Learning for High-Speed Corner Detection.pdf

FAST角点检测的最初始的英文原文,Edward Rosten 和 Tom Drummond 在2006年发表。我的博客里有详细的介绍这个算法,欢迎相互交流>_< http://blog.csdn.net/tostq

2015-10-21

Corner Detection via Topographic Analysis of Vector Potential.pdf

一种基于磁矢量势的角点检测方法,这是其英文原文。

2015-10-21

On Corner and Vertex Detection.pdf

这是一种早期的角点检测方法——DET角点检测方法经典原文。

2015-10-21

SUSAN—A New Approach to Low Level Image Processing.pdf

SUSAN角点及边缘检测方法经典英文原文,是一种通过模板来检测的方法,里面还提到了SUSAN噪声滤除的方法。我的博客里面http://blog.csdn.net/tostq里面有详细的解释,欢迎相互交流>_<

2015-10-21

Robust Low Complexity Corner Detector.pdf

LOCOCO角点检测方法(一种快速精确的Harris及KLT)的经典原文,里面减少了Harris的计算复杂度,并提出了一种子精确度的角度位置确定。如果想大概了解下论文内容,可以参考下我的博客,欢迎相互交流>_<

2015-10-19

Good Features to Track.pdf

Shi-Tomasi特征点(角点)检测及追踪方法的经典英文原文,这个方法也是KLT方法的一种改进。如果需要大概了解这个文章内容,可以参考本人的博客,欢迎相互交流>_<

2015-10-16

Detection and Tracking of Point Features

KLT光流法经典英文原文,里面重点介绍了如何选择跟踪的特征点,如果需要大概了解其原理,可以参考本人的博客,欢迎相互交流

2015-10-15

A Connectionist Model for Corner Detection in Binary and Gray Images

一种类神经网络模型Connectionist Model的角点检测方法,非常有意思,里面的方法融合多尺度及人工神经网络的思想,如果想大概了解下其内容,可以参考我的博客。

2015-10-13

Scale-Space for Discrete Signals.pdf

多尺度空间的经典英文原文,里面介绍了在离散信号情况下,什么样的滤波核能用于尺度变换。

2015-10-12

Uniqueness of the Gaussian Kernel for Scale-Space.pdf

多尺度空间分析的经典英文原文,主要描述高斯平滑为什么是唯一的能用多尺度空间平滑滤波的核。

2015-10-12

Distictive Image Features From Scale-Invariant Keypoints.pdf

Sift算法最经典的奠基论文,里面详细的讲解如何检测尺度不变性的特征点。

2015-10-12

Scale & Affine Invariant Interest Point Detectors.pdf

Mikolajczyk在2004年发表了论文[Scale & Affine Invariant Interest Point Detectors],提出了一种具有尺度和仿射不变性的Harris角点检测的改进方法

2015-10-10

tostq的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除