洛谷P2023 线段树乘模板

 P2023 [AHOI2009]维护序列

题目描述

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式:
(1)把数列中的一段数全部乘一个值;
(2)把数列中的一段数全部加一个值;
(3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

输入输出格式

输入格式:

 

第一行两个整数N和P(1≤P≤1000000000)。
第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。
第三行有一个整数M,表示操作总数。
从第四行开始每行描述一个操作,输入的操作有以下三种形式:
操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c(1≤t≤g≤N,0≤c≤1000000000)。
操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。
操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。
同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

 

输出格式:

 

对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

 

输入输出样例

输入样例#1: 复制

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

输出样例#1: 复制

2
35
8

说明

【样例说明】

初始时数列为(1,2,3,4,5,6,7)。

经过第1次操作后,数列为(1,10,15,20,25,6,7)。

对第2次操作,和为10+15+20=45,模43的结果是2。

经过第3次操作后,数列为(1,10,24,29,34,15,16}

对第4次操作,和为1+10+24=35,模43的结果是35。

对第5次操作,和为29+34+15+16=94,模43的结果是8。

测试数据规模如下表所示

数据编号 1 2 3 4 5 6 7 8 9 10

N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000

M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000

Source: Ahoi 2009

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#include<set>
#include<cmath>
#include<cctype>
#include<ctime>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define MOD 998244353
typedef long long ll;
typedef unsigned long long ull;
const int mm=100000;

using namespace std;

ll tree[mm<<2],add[mm<<2],mul[mm<<2];
int n,m,p;

void push_down(int k,int m)
{
	if(!add[k]&&mul[k]==1) return;
	add[2*k]=(add[2*k]*mul[k]+add[k])%p;
	add[2*k+1]=(add[2*k+1]*mul[k]+add[k])%p;
	mul[2*k]=(mul[2*k]*mul[k])%p;
	mul[2*k+1]=(mul[2*k+1]*mul[k])%p;
	tree[2*k]=(tree[2*k]*mul[k]+1ll*(m-m/2)*add[k])%p;
	tree[2*k+1]=(tree[2*k+1]*mul[k]+1ll*(m/2)*add[k])%p;
	add[k]=0;
	mul[k]=1;
}

void push_up(int k)
{
	tree[k]=(tree[2*k]+tree[2*k+1])%p;
}

void build(int l,int r,int k)
{
	add[k]=0;
	mul[k]=1;
	if(l==r)
	{
		cin>>tree[k];
		tree[k]%=p;
		return;
	}
	int mid=(l+r)/2;
	build(l,mid,2*k);
	build(mid+1,r,2*k+1);
	push_up(k);
	tree[k]%=p;
}

void update1(int l,int r,int k,int a,int b,ll key)
{
	if(a<=l&&b>=r)
	{
		add[k]=(add[k]+key)%p;
		tree[k]=(tree[k]+key*(r-l+1)*1ll)%p;
		return;
	}
	push_down(k,r-l+1);
	int mid=(l+r)/2;
	if(a<=mid) update1(l,mid,2*k,a,b,key);
	if(b>mid) update1(mid+1,r,2*k+1,a,b,key);
	push_up(k);
}

void update2(int l,int r,int k,int a,int b,ll key)
{
	if(a<=l&&b>=r)
	{
		add[k]=(add[k]*key)%p;
		tree[k]=(tree[k]*key)%p;
		mul[k]=(mul[k]*key)%p;
		return;
	}
	push_down(k,r-l+1);
	int mid=(l+r)/2;
	if(a<=mid) update2(l,mid,2*k,a,b,key);
	if(b>mid) update2(mid+1,r,2*k+1,a,b,key);
	push_up(k);
}

ll query(int l,int r,int k,int a,int b)
{
	if(a<=l&&b>=r)
		return tree[k];
	push_down(k,r-l+1);
	int mid=(l+r)/2;
	ll ans=0;
	if(a<=mid) ans=(ans+query(l,mid,2*k,a,b))%p;
	if(b>mid) ans=(ans+query(mid+1,r,2*k+1,a,b))%p;
	return ans;
}

int main()
{
	cin>>n>>p;
	build(1,n,1);
	cin>>m; 
	while(m--)
	{
		int k;
		cin>>k;
		if(k==1)
		{
			int a,b;
			ll c;
			cin>>a>>b>>c;
			update2(1,n,1,a,b,c);
		}
		else if(k==2)
		{
			int a,b;
			ll c;
			cin>>a>>b>>c;
			update1(1,n,1,a,b,c);
		}
		else
		{
			int a,b;
			cin>>a>>b;
			cout<<query(1,n,1,a,b)<<endl;
		}
	}
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有 $n$ 个点在数轴上,每个点有一个权值 $a_i$,你需要支持以下操作: - 修改一个点的权值。 - 给出 $l,r,k$,询问在区间 $[l,r]$ 中,权值严格大于 $k$ 的点的个数。 输入格式 第一行一个正整数 $n(1\leq n\leq 5\times10^5)$。 第二行 $n$ 个整数 $a_i(|a_i|\leq 10^9)$,表示每个点的权值。 第三行一个正整数 $m(1\leq m\leq 5\times10^5)$。 接下来 $m$ 行,每行一个操作,格式如下: - “Q l r k” 表示询问区间 $[l,r]$ 中,权值严格大于 $k$ 的点的个数。 - “C x y” 表示将第 $x$ 个点的权值修改为 $y$。 输出格式 对于每个询问操作,输出其结果。 输入样例 5 0 1 2 3 4 4 Q 2 5 3 C 4 6 Q 1 5 2 Q 3 4 4 输出样例 1 2 0 算法1 线段(动态开点) 线段的思想是把区间分成若干个小区间,每个小区间对应一段线段。对于每个线段,维护一些信息,例如区间和、区间最大值等等。 对于这道题目,我们可以按照值域线段的思想,将区间对应到值域上。即将整个区间 $[0,n-1]$ 对应到值域上,建立一棵值域线段。对于线段上的每个节点,维护该节点对应的区间内权值大于某个值 $k$ 的点的个数。当然,对于叶子节点,该值就是 $0$ 或 $1$。 对于一个查询操作 $Q(l,r,k)$,需要在值域线段上找到 $[l,r]$ 对应的区间,然后查询该区间内权值大于 $k$ 的点的个数。这个可以通过线段的区间查询操作实现。 对于一个修改操作 $C(x,y)$,需要在值域线段上找到 $x$ 对应的叶子节点,然后修改该叶子节点的值为 $y$,然后向上更新整个线段,直到根节点。 时间复杂度 对于每次修改和查询操作,都需要在值域线段上查询或修改,时间复杂度是 $O(\log n)$。总时间复杂度是 $O(m\log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值