1、 输入mn,m是第一个数,之后每一个都是前一个的平方根,一共m个数,求总和
/**
* 输入mn,m是第一个数,之后每一个都是前一个的平方根,一共m个数,求总和
*/
public class Square {
public static void main(String[] args) {
System.out.println( "计算后的值为:" + getFrontSquare(2, 16));
}
/**
* @param m m为个数
* @param n n为第一个数
* @return
*/
public static double getFrontSquare(int m, int n) {
if (m > 0) {
double sum = 0;
double temp = n;
for (int i = 0; i < m; i++) {
temp = Math.sqrt(temp);
sum += temp;
}
return sum;
} else if (m == 0) {
return n;
}
return 0;
}
}
2、2579 组成互不相同切无重复数字的三位数
/**
* 2579 组成互不相同切无重复数字的三位数
*/
public class FormatNumber {
public static void main(String[] args) {
int temp = 0;
int arr[] = {2, 5, 7, 9};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
if(arr[i] != arr[j] && arr[i] != arr[k] && arr[j] != arr[k]){
temp += 1;
System.out.println(arr[i] * 100 + arr[j] * 10 + arr[k]);
}
}
}
}
System.out.println("count = " + temp);
}
}
3、高并发的程序以及数据库的优化:
- 首先服务器上,CDN、分布式、负载均衡一定要有,还要通过缓存减轻服务器
- 程序上,使用线程池、数据库连接池、避免使用过多的锁
- 数据库上读写分离、动静分离、分表分库、引擎优化、优化sql语句、减少sql锁,
4、输入xyz、由小到大输出这三个数
/**
* 输入xyz、由小到大输出这三个数
*/
public class OrderNumber {
static void orderNumAsc(int[] arr) {
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if (arr[i] < arr[j]) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
}
System.out.print("排序后的顺序为:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + ",");
}
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.print("请输入第一个数:");
int x = in.nextInt();
System.out.print("请输入第二个数:");
int y = in.nextInt();
System.out.print("请输入第三个数:");
int z = in.nextInt();
int arr[] = {x, y, z};
orderNumAsc(arr);
}
}
5、在以前的开发中编写的失败的功能模块以及改进:
失败的模块:有一大块比较失败的地方就是mongodb中查询出来的字段的过滤问题
失败的地方:我用的是map遍历对象进行字段的过滤
原因:开始在重构项目的过程中,架构师推荐使用Mongodb作为业务主要数据持久化数据库,但是当时我对Mongodb的了解并不是特别深刻,以至于滥用了Reference与Embed的区别,在设计实体类的时候全部关联都用Reference进行操作,以至于后来涉及到字段过滤的时候没有办法通过Mongodb自己的语法的Project进行字段过滤,因为Reference并没有将数据嵌入到数据中,只是保存了另一条数据的引用,由于之后业务量与数据的增加,所以没有重新更改实体类的关联方式,导致字段过滤成为负担。
如果有机会一定要好好研究之后再进行设计。
之后的弥补与改进:自定义了Annotation,通过在Service层增加过滤字段注解,编写AOP捕获注解,返回处理过的字段