又是一道神题……为什么网络流的建图都这么诡异啊……
写在前面:互相喜欢什么的……cp都得死!身为单身狗的我手中多出了不知名的火把和汽油
考虑把所有的男孩和女孩都拆成两个点,分别表示喜欢点和不喜欢点。
- 对于一对相互喜欢的男孩女孩,男孩的喜欢点向女孩的喜欢点建一条流量为1的边。
- 对于一对不互相喜欢的男孩女孩,男孩的不喜欢点向女孩的不喜欢点建一条流量为1的边。
- 每一个男孩的喜欢点向不喜欢点建一条流量为k的边,每一个女孩的不喜欢点向喜欢点建一条流量为k的边。
- 建立超级源点和超级汇点,超级源点向所有男孩的喜欢点建一条流量为a的边,所有女孩的喜欢点向超级汇点建一条流量为a的点。
第四条中的a就是题目中的曲目数。
虽然这题中的a最大就是n,可以直接暴力枚举。但是这里我们考虑a是单调的,所以可以二分a的值。
至于判断,跑一边网络流求出最小割sum,如果 sum==n×a ,那么当前的曲目数是可行的。
p.s.以后再做网络流的题目,数组能开大就开大一点吧,不然不是RE就是TLE……
附上AC代码:
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=210;
struct side{
int to,w,nt;
}s[200010];
int n,m,h[N],num,l,r,mid,ans,st,ed,cur[N],d[N];
char map[N][N];
queue <int> que;
inline void add(int x,int y,int w){
s[num]=(side){y,w,h[x]},h[x]=num++;
s[num]=(side){x,0,h[y]},h[y]=num++;
}
inline int bfs(int st,int ed){
while (!que.empty()) que.pop();
memset(d,0,sizeof d),d[st]=1,que.push(st);
while (!que.empty()){
int p=que.front();que.pop();
for (int i=h[p]; ~i; i=s[i].nt)
if (s[i].w&&!d[s[i].to]) d[s[i].to]=d[p]+1,que.push(s[i].to);
if (d[ed]) break;
}
return d[ed];
}
inline int so(int x,int w){
if (x==ed) return w;
int sum=0,f;
for (int &i=cur[x]; ~i; i=s[i].nt)
if (s[i].w&&d[s[i].to]==d[x]+1&&(f=so(s[i].to,min(s[i].w,w-sum)))){
s[i].w-=f,s[i^1].w+=f,sum+=f;
if (sum==w) return w;
}
if (!sum) d[x]=0;
return sum;
}
inline void build(int a){
num=0,memset(h,-1,sizeof h);
for (int i=1; i<=n; ++i) add(st,i,a),add(i+n*2,ed,a);
for (int i=1; i<=n; ++i) add(i,i+n,m),add(i+n*3,i+n*2,m);
for (int i=1; i<=n; ++i)
for (int j=1; j<=n; ++j)
if (map[i][j]=='Y') add(i,j+n*2,1);
else add(i+n,j+n*3,1);
return;
}
inline bool check(int a){
build(a);int sum=0;
while (bfs(st,ed)) memcpy(cur,h,sizeof h),sum+=so(st,0x7fffffff);
return sum==n*a;
}
int main(void){
scanf("%d%d",&n,&m);
for (int i=1; i<=n; ++i) scanf("%s",map[i]+1);
st=0,ed=n*4+1,l=1,r=n;
while (l<=r)
if (check(mid=l+r>>1)) ans=mid,l=mid+1;
else r=mid-1;
return printf("%d\n",ans),0;
}
网络流算法应用

本文介绍了一种使用网络流算法解决配对问题的方法。通过构建特殊的图结构,利用网络流求解最小割,以确定可行的匹配方案数量。适用于解决两组元素间的匹配问题。
626

被折叠的 条评论
为什么被折叠?



