【BZOJ】1305 [CQOI2009]dance跳舞 网络流

网络流算法应用
本文介绍了一种使用网络流算法解决配对问题的方法。通过构建特殊的图结构,利用网络流求解最小割,以确定可行的匹配方案数量。适用于解决两组元素间的匹配问题。

题目传送门

又是一道神题……为什么网络流的建图都这么诡异啊……

写在前面:互相喜欢什么的……cp都得死!身为单身狗的我手中多出了不知名的火把和汽油

考虑把所有的男孩和女孩都拆成两个点,分别表示喜欢点和不喜欢点。

  1. 对于一对相互喜欢的男孩女孩,男孩的喜欢点向女孩的喜欢点建一条流量为1的边。
  2. 对于一对不互相喜欢的男孩女孩,男孩的不喜欢点向女孩的不喜欢点建一条流量为1的边。
  3. 每一个男孩的喜欢点向不喜欢点建一条流量为k的边,每一个女孩的不喜欢点向喜欢点建一条流量为k的边。
  4. 建立超级源点和超级汇点,超级源点向所有男孩的喜欢点建一条流量为a的边,所有女孩的喜欢点向超级汇点建一条流量为a的点。

第四条中的a就是题目中的曲目数。

虽然这题中的a最大就是n,可以直接暴力枚举。但是这里我们考虑a是单调的,所以可以二分a的值。

至于判断,跑一边网络流求出最小割sum,如果 sum==n×a ,那么当前的曲目数是可行的。

p.s.以后再做网络流的题目,数组能开大就开大一点吧,不然不是RE就是TLE……

附上AC代码:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

const int N=210;
struct side{
    int to,w,nt;
}s[200010];
int n,m,h[N],num,l,r,mid,ans,st,ed,cur[N],d[N];
char map[N][N];
queue <int> que;

inline void add(int x,int y,int w){
    s[num]=(side){y,w,h[x]},h[x]=num++;
    s[num]=(side){x,0,h[y]},h[y]=num++;
}

inline int bfs(int st,int ed){
    while (!que.empty()) que.pop();
    memset(d,0,sizeof d),d[st]=1,que.push(st);
    while (!que.empty()){
        int p=que.front();que.pop();
        for (int i=h[p]; ~i; i=s[i].nt)
            if (s[i].w&&!d[s[i].to]) d[s[i].to]=d[p]+1,que.push(s[i].to);
        if (d[ed]) break;
    }
    return d[ed];
}

inline int so(int x,int w){
    if (x==ed) return w;
    int sum=0,f;
    for (int &i=cur[x]; ~i; i=s[i].nt)
        if (s[i].w&&d[s[i].to]==d[x]+1&&(f=so(s[i].to,min(s[i].w,w-sum)))){
            s[i].w-=f,s[i^1].w+=f,sum+=f;
            if (sum==w) return w;
        }
    if (!sum) d[x]=0;
    return sum;
}

inline void build(int a){
    num=0,memset(h,-1,sizeof h);
    for (int i=1; i<=n; ++i) add(st,i,a),add(i+n*2,ed,a);
    for (int i=1; i<=n; ++i) add(i,i+n,m),add(i+n*3,i+n*2,m);
    for (int i=1; i<=n; ++i)
        for (int j=1; j<=n; ++j)
            if (map[i][j]=='Y') add(i,j+n*2,1);
            else add(i+n,j+n*3,1);
    return;
}

inline bool check(int a){
    build(a);int sum=0;
    while (bfs(st,ed)) memcpy(cur,h,sizeof h),sum+=so(st,0x7fffffff);
    return sum==n*a;
}

int main(void){
    scanf("%d%d",&n,&m);
    for (int i=1; i<=n; ++i) scanf("%s",map[i]+1);
    st=0,ed=n*4+1,l=1,r=n;
    while (l<=r)
        if (check(mid=l+r>>1)) ans=mid,l=mid+1;
        else r=mid-1;
    return printf("%d\n",ans),0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值