我们仍处于 2020 年代初期,而且情况已经与前十年大不相同。对于数据主管和专业人士而言,未来几年可能意味着 IT 行业前所未见的大规模变革。有前途的新技术——以及重新设计和重新利用的旧技术——正在以令人兴奋的新方式重塑数据中心和分析商店。我们询问了行业领导者对增强企业数据竞争能力的看法。
数字线程
数字线程构造是一个实时的、集成的存储库和审计跟踪,它是在数据实体(如产品、员工和客户)的端到端生命周期中生成的实时数据。“虽然数字线程的概念并不新鲜,但我们才刚刚开始看到广泛采用和实施的起飞,”利盟转型产品总监安迪·科普 (Andy Kopp) 说。
Kopp 解释说,例如,对于产品,这将包括从设计到制造和服务再到回收的所有内容。“这种数据管理的整体方法通常补充物联网和云支持的即服务战略,提供了在整个价值链中扩展闭环分析的机会。” 数字线程的好处包括使供应链团队能够“根据真实世界的实时客户使用趋势评估生产产品的内容、地点和时间”,或者帮助产品开发团队“从他们的设计决策中看到下游服务的影响。 ”
数据目录
数据目录通过元数据提供跨企业数据资产的集中视图,正在成为数据管理人员和业务用户等使用的具有竞争力的工具。SAS 数据管理解决方案高级经理 Kim Kaluba 表示:“通过消除在复杂数据生态系统中搜索和查找正确数据的时间,数据目录使用户能够快速找到正确的数据来正确回答业务问题。”
未来几年,“数据目录将继续成熟并演变成信息目录的使用,”Kaluba 预测。“组织将寻求超越仅仅对数据进行编目,而是能够在一个位置识别和编目所有重要的数字资产。信息目录的兴起将提高对数据的理解,并允许对影响企业的最重要的数字资产进行调整、维护、创建和治理,并最大限度地了解这些资产的成败。”
数据智能软件
将数据目录更进一步,数据智能软件是一个包含一系列技术的类别,并且对数据经理将为其企业提供的能力产生深远影响,尤其是在战略规划、卓越运营和创新领域.
“将‘亚马逊’视为企业数据,”Erwin by Quest 的产品营销总监 Danny Sandwell 说。“[这是] 一种真正的消费者方法,可以智能地展示您可以拥有的数据、了解其他志同道合的数据消费者访问过的内容、指定您的数据需求的购物车以及成为一站式自我的内置准备功能- 服务商店,满足您所有的数据需求、顾虑和想法。”
数据智能软件提供了一个灵活的自动化框架,可以识别、理解、控制和洞察您的数据资产,促进企业数据协调、编排和“对数据的信任”,以确保企业数据可发现、可访问、可理解Sandwell 说,高度可用且受保护。
该技术“为组织的端到端数据能力提供了单一、整合的视图。它结合了数据编目、对数据资产、流程和技术的深入和精心策划的技术视图、数据素养、业务数据词汇、策略、规则和分类框架,以及集成、激活和社会化这些的自动化人工制品及其相互关系,” Sandwell 指出,并补充说这支持更全面和有效的方法。“net-net 是一种企业数据功能,它与业务优先级高度一致,具有成本效益、敏捷性,并且能够在数据驱动的计划和用例上提供更好的价值实现时间,这些计划和用例将产生所需的变革性影响业务要求很高。”
横向扩展数据库
越来越多的数据库被部署在快速变化的环境中,以满足从内部和外部所有来源流入的不断增长的数据量和类型。这些横向扩展数据库可以快速添加或换出以满足性能和容量要求。“横向扩展数据库也被广泛采用,”Splice Machine 首席执行官 Monte Zweben 说。这些数据库可以根据特定要求和用例进行定制。“现在数据库的专业化程度令人难以置信,因此具体了解将用于哪些数据是选择正确数据库的最佳方式,”Zweben 指出。
这些要求的范围可能从不需要实时的分析查询到基于高可用性和短停机时间的机器学习分析查询或实时事务查询。“规模、访问模式、延迟要求、吞吐量、可用性和一致性都是确定数据适合性时要考虑的重要标准,”Zweben 说。
人工智能与机器学习
人工智能和机器学习是许多信息技术计划的关键。它们对数据功能的影响将是深远的,特别是如果企业寻求数据驱动的决策。BMC Software 数字服务和运营管理高级副总裁兼总经理 Margaret Lee 表示,人工智能和机器学习使“平凡的流程能够智能自动化,并可以将业务数据货币化”。
“人工智能和机器学习用于从记录等传统来源和物联网设备、社交媒体和客户参与系统等新来源中提取和利用有价值的数据。这项技术与自动化工具集成,将原始数据转换为洞察力和行动,并从数据管道中训练模型,”Lee 说。人工智能和机器学习还“有助于确保数据符合数据质量最佳实践,使用治理工具保护隐私,并可以自动化工作流程以提高可见性。除此之外,还可以利用预测分析来摄取、存储、处理、收集和分析数据。”
自动机器学习
自动化机器学习 (AutoML) 有可能对数据资产产生积极影响。ISG 数字战略和解决方案总监 Shriram Natarajan 表示:“正如 DevOps 和 DevSecOps 在应用程序世界中实现更高水平的流动性和业务导向一样,AutoML 有能力将其带入数据世界。”
项目实战:https://www.yunduoketang.com/article/shangwangkeff.html
https://www.yunduoketang.com/article/xianshangketangpingtai.html
https://www.yunduoketang.com/article/zhibojiaoyupingtai.html
https://www.yunduoketang.com/article/jiaoxuepingtairuanjian1.html
https://www.yunduoketang.com/article/zxjy64.html