亚马逊推出了Redshift ML,这是其数据仓库服务的扩展,使数据分析师和开发人员可以更轻松地使用存储在 Redshift 中的数据创建和训练机器学习模型。
Redshift ML 在去年的亚马逊re:Invent大会上作为预览版宣布,它利用Amazon SageMaker(一种完全托管的机器学习服务)来构建基于用户数据的机器学习模型,而用户不必学习新工具或语言。
Amazon SageMaker 已经可以使用 SQL 语句从数据中创建和训练机器学习模型,然后使用这些模型进行预测。Redshift ML 通过自动化将训练数据从 Redshift 导出到 Amazon S3 存储服务中的存储桶,然后启动机器学习训练过程的繁琐工作,进一步实现了这一目标。
Amazon Web Services 首席布道师 (EMEA) 的 Danilo Poccia 表示,为了创建机器学习模型,开发人员可以使用简单的 SQL 查询来指定训练模型所需的数据以及他们想要预测的输出值。
“例如,要创建一个预测营销活动成功率的模型,您可以通过选择包含客户资料和先前营销活动结果的列以及要预测的输出列来定义输入。在这个例子中,输出列可能是一个显示客户是否对某个活动表现出兴趣的列,”他在此处的一篇帖子中解释道。.
运行 SQL 命令后,Redshift ML 将指定数据从 Redshift 安全地导出到用户的 S3 存储桶中,并调用 SageMaker 的 Autopilot 工具准备数据,选择合适的预构建算法,并应用该算法进行模型训练。用户还可以指定要