import numpy as np import pandas as pd ################# 准备数据 ################# a1 = np.arange(1,101) a3 = a1.reshape((2,5,10)) a3 ''' array([[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], [ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]], [[ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], [ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], [ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80], [ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90], [ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]]]) ''' ################# 准备标签 ################# # 第 1 维的标签 index1 = pd.Series(np.arange(1,11)) index1 = index1.astype(str) index1 = 'A'+index1 index1 ''' 0 A1 1 A
Python中把多维数组展开成DataFrame
最新推荐文章于 2024-09-07 20:47:26 发布
本博客演示了如何将一个三维NumPy数组转换成一个带有适当索引的Pandas DataFrame。首先创建了一个3D数组,然后分别创建了三个不同维度的标签,最后通过笛卡尔积生成了完整的索引,并将数组展平合并到一个DataFrame中。
摘要由CSDN通过智能技术生成