- 博客(36)
- 收藏
- 关注
原创 面向GPU、CPU及机器学习加速器的机器学习编译器
机器学习编译器是一种专门针对机器学习工作负载设计的工具,旨在将高层模型描述(如TensorFlow或PyTorch模型)高效编译为可在不同硬件(如GPU、CPU或专用加速器)上执行的底层代码。其核心目标是优化计算图、内存使用和并行性,以最大化硬件性能。
2025-06-13 14:35:53
308
原创 在macOS上运行Linux容器的方法
安装Docker Desktop后,系统会自动创建轻量级Linux虚拟机(基于HyperKit),无需手动配置。在虚拟机中安装Docker或Podman,之后即可通过SSH或共享目录与主机交互。Lima是一个macOS上的开源工具,能够自动配置Linux虚拟机并支持容器运行时(如containerd)。Colima专门为macOS优化,结合了Lima和容器运行时的优势,支持Docker和Podman。Docker Desktop是macOS上最便捷的容器运行方案,支持Linux容器直接运行。
2025-06-12 19:35:35
364
原创 容器化包允许应用程序使用 Linux 容器
容器化包利用 Linux 容器的轻量级虚拟化技术,通过共享主机操作系统内核来运行隔离的用户空间实例。每个容器拥有独立的文件系统、网络和进程空间,确保应用程序之间的隔离性和安全性。容器化包是一种将应用程序及其依赖项打包到标准化单元(即容器)中的技术。容器化包通常包含应用程序代码、运行时环境、系统工具、库和配置文件,确保应用程序可以在不同的计算环境中一致运行。通过容器化包技术,开发者和运维团队可以更高效地部署和管理应用程序,同时利用 Linux 容器的隔离性和轻量级特性优化资源使用。
2025-06-11 14:05:26
344
原创 java异步编程难题拆解
异步编程的核心在于处理非阻塞操作,避免线程等待导致资源浪费。常见的难题包括回调地狱、错误处理复杂化以及线程上下文管理。链式调用替代嵌套回调。在Spring环境下使用。
2025-06-10 18:03:25
614
原创 【Ubuntu崩溃修复】
重启计算机并在启动时按住Shift键进入GRUB菜单,选择“Advanced options for Ubuntu”,再选择带有“recovery mode”的内核选项。恢复模式提供多个修复选项,包括fsck(文件系统检查)、网络连接、root shell等。选择“fsck”检查并修复文件系统错误,完成后选择“resume”尝试正常启动。准备Ubuntu安装介质,从Live环境启动后选择“Try Ubuntu”。若更新后出现崩溃,在GRUB菜单选择旧内核启动。若正常,迁移旧用户数据至新账户。
2025-06-09 22:01:20
555
原创 【SpringBoot自动化部署方法】
这些方法可以根据实际需求单独使用或组合使用,实现从开发到生产的全自动化部署流程。将SpringBoot应用打包为Docker镜像并部署到容器平台。通过GitHub Actions实现CI/CD流程。配置Jenkins流水线实现自动构建和部署。在K8s集群中部署SpringBoot应用。通过Ansible实现多服务器自动化部署。
2025-06-08 22:47:47
881
原创 【Fiddler工具判断前后端Bug】
若请求被标记为红色且提示CORS错误,需检查后端是否配置了正确的Access-Control-Allow-Origin头。在Fiddler中查看Request的Raw或JSON选项卡,确认参数名、数据类型、必填字段是否符合接口文档要求。若请求未出现在列表中,可能是前端代码未触发或被浏览器拦截。使用Fiddler抓包工具可以高效定位问题是出在前端还是后端,主要通过分析请求和响应的内容、状态码、数据格式等关键信息。若响应内容缺失字段或数据结构不符,但状态码为200,可能是后端数据处理异常。
2025-06-07 15:11:38
1201
原创 【SpringBoot自动化部署】
配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub Webhook)。在构建步骤中添加Maven或Gradle构建命令。在Post-build Actions中配置部署脚本,例如将生成的JAR包通过SSH传输到目标服务器并启动。将SpringBoot应用打包为Docker镜像,可以简化环境配置和部署流程。Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。Ansible可以实现服务器配置的标准化和批量部署。
2025-06-06 19:17:23
744
原创 【Fiddler抓取手机数据包】
操作手机应用或网页,Fiddler主界面会实时显示请求和响应数据。通过以上步骤,可高效捕获手机应用的HTTP/HTTPS通信数据,用于调试或分析。,避免影响正常网络使用。若不再需要,可卸载手机端的Fiddler根证书。查看电脑的本地IP地址(IPv4地址),手机需能ping通该IP。电脑和手机需连接同一Wi-Fi网络。可通过电脑命令行输入。,下载Fiddler根证书(如。完成抓包后,将手机代理恢复为。打开Fiddler,进入。)聚焦目标应用流量。
2025-06-05 13:14:37
578
原创 【搭建 Transformer】
Transformer 是一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理任务。自注意力机制是 Transformer 的核心,计算输入序列中每个元素与其他元素的关联度。其中,$Q$ 为查询矩阵,$K$ 为键矩阵,$V$ 为值矩阵,$d_k$ 为键的维度。解码器层包含掩码多头注意力、编码器-解码器注意力和前馈神经网络。整合编码器和解码器,构建完整的 Transformer 模型。多头注意力通过并行计算多个自注意力头,增强模型的表达能力。前馈神经网络用于进一步处理自注意力层的输出。
2025-06-03 19:29:52
399
原创 【RAG 应用的可视化框架】
使用 Plotly Dash 或 Panel 构建自定义监控面板,适合需要深度定制的场景。核心组件检索文档的热力图(相似度分布)。生成答案与检索内容的关联性分析。示例代码(Dash):])
2025-06-02 12:50:10
663
原创 【Rust 轻松构建轻量级多端桌面应用】
Tauri 是一个基于 Rust 的轻量级框架,可替代 Electron,用于构建高性能、低资源占用的桌面应用。其核心优势在于利用系统原生 WebView 而非捆绑 Chromium,显著减小应用体积。Tauri 支持 Windows、macOS 和 Linux。(Rust 后端)和前端代码目录(如 React/Vue)。Tauri 允许前端调用 Rust 函数实现高性能操作。
2025-05-31 10:54:47
666
原创 【创意Python代码】
这段代码生成一个曼德勃罗分形图案,利用复数运算和循环控制字符输出。实现凯撒密码的加密与解密功能,可自定义偏移量。库,模拟康威生命游戏的演化过程。递归实现科赫雪花曲线,调整。库,可自定义颜色和尺寸。参数可以改变复杂度。
2025-05-30 13:28:05
729
原创 【Manus AI与多语言手写识别】
ManusAI专注AI技术研发,核心领域包括计算机视觉、自然语言处理及多模态交互,尤其擅长多语言手写识别。其技术需解决字符集多样性、书写风格差异和上下文语义理解等挑战,采用混合模型架构(CNN+Transformer)并支持100+种语言动态切换。应用涵盖教育、金融和智能设备领域,通过端到端训练、用户自适应和隐私保护优化性能。评估指标采用字符错误率(CER)公式,持续提升识别准确度。
2025-05-28 10:17:05
316
原创 【JavaScript 性能优化方法】
频繁的 DOM 操作会导致浏览器重绘和回流,影响性能。对于频繁触发的事件(如滚动、输入),使用节流(throttle)和防抖(debounce)限制执行频率。借助 Chrome DevTools 的 Performance 和 Memory 面板,定位性能瓶颈。使用工具如 Webpack 或 Rollup 进行代码压缩和分割,按需加载资源。减少事件监听器的数量,利用事件冒泡机制将事件处理程序委托到父元素。减少循环中的计算量,避免在循环中执行 DOM 操作或重复计算。
2025-05-27 11:26:29
743
原创 【构建人工智能的量化投资平台】
金融数据是量化投资的基础。需要整合多源数据,包括市场数据、基本面数据、另类数据等。市场数据可通过交易所API或第三方数据供应商获取,如Alpha Vantage、Yahoo Finance等。线性模型、树模型、神经网络等各有优势。构建有效的特征是模型性能的关键。技术指标、统计特征、波动率指标等是常见选择。有效的风险管理是量化投资成功的关键。需要设置止损止盈、仓位控制等机制。需要构建完整的回测框架,考虑交易成本、滑点等现实因素。数据清洗是重要环节,包括处理缺失值、异常值、标准化等。
2025-05-25 13:26:25
542
原创 【数据库DevOps与CI/CD解决方案】
数据库DevOps是将DevOps实践应用于数据库管理的过程,旨在实现数据库变更的自动化、可重复性和可靠性。结合CI/CD(持续集成/持续交付)流程,可以显著提升数据库开发的效率和质量。通过上述方法,可以实现数据库变更的端到端自动化,减少人为错误,加快交付周期。使用Docker或Kubernetes创建隔离的数据库环境,确保开发、测试、生产环境一致性。使用Git等工具管理数据库脚本(如SQL、DDL、DML),确保所有变更可追溯。集成Prometheus或Grafana监控数据库性能,确保变更无异常。
2025-05-24 13:21:47
669
原创 Android编译构建
在Android开发中,编译和构建是将源代码转换为可安装的APK文件的过程。以下是Android编译构建的主要步骤和工具。
2025-05-23 16:41:23
843
原创 【免费的IP代理池】
免费代理IP的稳定性和安全性通常较低,可能不适合高要求的应用场景。建议在使用前进行充分的验证和测试,或者考虑使用付费代理服务以获得更高质量的资源。通过编写脚本,可以从多个免费代理网站抓取IP,并进行验证和筛选。一些开源项目可以帮助搭建和管理代理池,这些项目通常提供自动化的IP获取和验证功能。这些网站通常会提供IP地址、端口、协议类型(HTTP/HTTPS/SOCKS)以及代理的地理位置信息。许多网站提供免费的代理IP列表,这些IP可以用于临时使用。一些服务提供免费的API接口,可以获取代理IP列表。
2025-05-18 14:43:17
599
原创 【数据库故障排查指南】
本文提供了一套全面的数据库故障排查指南,涵盖了连接问题、性能问题、数据一致性、存储空间、安全性、高可用性、日志分析、工具使用、常见错误处理及持续改进等多个方面。通过检查服务状态、网络连接、配置文件,优化SQL语句和索引,使用事务确保数据一致性,监控存储空间,更新补丁,配置主从复制,分析日志,利用诊断工具,记录错误代码,以及定期回顾和改进,可以有效地排查和解决数据库故障,确保数据库系统的稳定运行和高效管理。
2025-05-15 16:02:44
352
原创 Python 爬虫基础
Requests:用于发送 HTTP 请求,获取网页内容。:用于解析 HTML 和 XML 文档,提取数据。Scrapy:一个强大的爬虫框架,适合大规模数据抓取。Selenium:用于模拟浏览器操作,适合处理动态加载的网页。
2025-05-14 14:25:01
403
原创 【安装Node.js】
Next.js 项目可以部署到多种平台,如 Vercel、Netlify 或自定义服务器。使用 Vercel 部署是最简单的方式,只需将项目推送到 GitHub 仓库,然后在 Vercel 中导入该仓库即可自动部署。通过以上步骤,可以完成 Next.js 的安装、配置和基本使用。根据项目需求,可以进一步探索 Next.js 的高级功能和优化策略。Next.js 是基于 Node.js 的框架,因此需要先安装 Node.js。打开浏览器访问该地址,可以看到 Next.js 的默认欢迎页面。
2025-05-13 12:59:56
483
原创 大模型搭建的聊天机器人
大模型聊天机器人的核心组件包括语言模型、对话管理模块和用户接口。语言模型负责理解和生成自然语言文本,常用的模型如GPT-3、GPT-4等,能够处理复杂的上下文。对话管理模块通过状态机或机器学习模型维护对话状态,生成合适的回复。用户接口设计需注重用户体验,可以是命令行、网页或移动应用。为了提高性能,可以对预训练模型进行微调,使用特定领域的数据集优化模型。部署后需持续监控性能,并通过日志和用户反馈进行调整。此外,安全性和隐私保护是设计和部署中不可忽视的环节,需采取技术措施确保用户数据安全。通过这些步骤,可以构建
2025-05-12 17:46:18
547
原创 制作刷题助手
刷题助手的开发涉及多个关键步骤,首先需明确功能需求,包括题目分类、难度筛选、自动批改、错题记录和学习进度跟踪等。选择合适的开发工具和编程语言,如Python用于数据处理,JavaScript用于前端开发,数据库可选用MySQL或MongoDB。设计简洁易用的用户界面,使用React或Vue.js等前端框架。实现题目管理模块,支持题目的增删改查,并通过API进行管理。开发自动批改功能,利用正则表达式或自然语言处理技术比对用户答案与标准答案。记录错题并提供复习功能,同时跟踪用户学习进度,统计已完成题目数量和正确
2025-05-11 16:21:29
437
原创 自动生成完整的短视频
系统根据生成的文案,自动从素材库中挑选与文案内容相匹配的视频片段。素材库包含各种类型的视频片段,如风景、人物、物品等,确保素材与文案内容高度相关。系统通过自然语言处理技术,分析输入的主题或关键词,生成一段与主题相关的视频文案。系统将生成的文案、视频素材、字幕和背景音乐进行合成,生成一段高清短视频。背景音乐的风格和节奏会与视频内容相匹配,增强视频的观赏性。系统会根据输入的主题或关键词进行内容生成。通过以上步骤,系统能够根据用户输入的视频主题或关键词,自动生成完整的短视频内容,极大地简化了视频制作流程。
2025-05-11 16:04:55
798
原创 开发一个英语学习网站
在开发一个英语学习网站时,首先需要明确网站的主要目标,如提供学习资源、在线课程和语言交流平台,并确定核心功能,包括用户注册、课程管理、在线测试和论坛讨论。技术栈的选择应基于需求,前端可使用HTML、CSS、JavaScript及框架如React或Vue.js,后端可选择Node.js、Django或Ruby on Rails,数据库则可采用MySQL、PostgreSQL或MongoDB。数据库结构设计需清晰,包括用户表、课程表等,并确保表间关系明确。开发过程中,需实现用户认证系统、课程管理功能和在线测试系
2025-05-09 20:00:41
455
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人