一、论文部分
题目:Teal:WAN流量工程的学习加速优化
创新点:FlowGNN(流向图神经网络)+ 多智能体强化学习(Multi-Agent RL)+ ADMM(交替方向乘子法)优化
Abstract
Teal通过以下三个主要组件实现学习加速的流量工程:
FlowGNN(流向图神经网络):Teal首先设计了FlowGNN来学习和表示网络的拓扑结构和流量特征。FlowGNN能够有效捕捉链路容量限制,并生成包含这些信息的嵌入向量。
多智能体强化学习(Multi-Agent RL):Teal使用多智能体强化学习将每个流量需求独立分配到网络中的预配置路径。这样可以减少问题规模,使学习过程更容易处理。每个需求被视为一个智能体,独立决策分配策略,最终共同优化全局的TE目标。
ADMM(交替方向乘子法)优化:最后,Teal使用ADMM算法进一步优化分配结果,减少约束违例(如链路过载)并提高解的质量。