牛牛定义排序子序列为一个数组中一段连续的子序列,并且这段子序列是非递增或者非递减排序的。牛牛有 一个长度为n的整数数组A,他现在有一个任务是把数组A分为若干段排序子序列,牛牛想知道他最少可以把这个 数

 

题目:牛牛定义排序子序列为一个数组中一段连续的子序列,并且这段子序列是非递增或者非递减排序的。牛牛有
一个长度为n的整数数组A,他现在有一个任务是把数组A分为若干段排序子序列,牛牛想知道他最少可以把这个
数组分为几段排序子序列。

如样例所示,牛牛可以把数组A划分为[1,2,3]和[2,2,1]两个排序子序列,至少需要划分为2个排序子序列,所以输出
2
输入描述:
输入的第一行为一个正整数n(1 ≤ n ≤ 10^5)
第二行包括n个整数A_i(1 ≤ A_i ≤ 10^9),表示数组A的每个数字。
输出描述:
输出一个整数表示牛牛可以将A最少划分为多少段排序子序列
示例1:
输入
6
1 2 3 2 2 1
输出
2

分析:找波峰波谷(波峰+波谷+1==序列个数)

int order_count()
{
	int n;//数组大小
	cin >> n;
	vector<int> v;
	v.resize(n);//数组大小为n

	//录入数据
	for (int i = 0; i < n; i++)
	{
		cin >> v[i];
	}

	//找波峰波谷(波峰+波谷+1==序列个数,因此ret初始化为1)
	int ret = 1;
	for (int i = 1; i < n - 1; i++)
	{
		//以中间元素和左右两个元素大小作比较,因此i取值最大是n-2
		if ((v[i - 1]<=v[i] && v[i]>=v[i + 1]) || (v[i - 1] >= v[i] && v[i] <= v[i + 1]))
		{
			ret++;//每进来一次说明有一个波峰/波谷
			//正常情况下,i-1,i,i+1位置都判断过来了,应该判断i+2位置了,
			//此时是i的位置,则需要i加1一次,循环上去i再加一次,就是i+2了,
			//但是由于i的最大取值是i-2,因此当i==n-3时,如果i加1一次是n-2,
			//循环上去再加一次1就是n-1,越界了,因此当i==n-3时无需再加1
			if (i != n - 3)
			{
				i++;
			}
		}
	}
	return ret;
}

 

### 回答1: 算法步骤如下: 1. 初始化变量max_len为1,表示当前最长连续递增子序列长度为1。 2. 初始化变量cur_len为1,表示当前正在查找的连续递增子序列长度为1。 3. 从线性表的第二个元素开始遍历,依次比较当前元素和前一个元素的大小关系。 4. 如果当前元素大于前一个元素,则将cur_len加1,表示当前正在查找的连续递增子序列长度增加了1。 5. 如果当前元素小于等于前一个元素,则将cur_len重置为1,表示当前正在查找的连续递增子序列被中断了。 6. 每次更新cur_len后,都将其与max_len比较,如果cur_len大于max_len,则更新max_len为cur_len。 7. 遍历完整个线性表后,max_len即为该线性表中最长的连续递增子序列长度。 8. 如果需要找到具体的最长连续递增子序列,可以记录下最长子序列的起始位置和结束位置,然后将这段子序列输出即可。 算法的时间复杂度为O(n),空间复杂度为O(1)。 ### 回答2: 算法设计思路: 1. 定义count记录当前递增长度定义maxCount记录最大递增长度定义startIndex记录当前递增列的起始下标,定义maxStartIndex记录最大递增列的起始下标。 2. 从第二个元素开始扫描整个线性表,若当前元素比前一个元素大,则递增长度count加1;否则,更新maxCount和maxStartIndex以及重置count和startIndex。 3. 扫描结束后,返回maxStartIndex和maxCount即可。 该算法的时间复杂度为O(n),空间复杂度为O(1)。 算法实现代码如下: int findLongestIncreasingSubSeq(int A[], int n) { int maxCount = 1, count = 1, startIndex = 0, maxStartIndex = 0; for (int i = 1; i < n; i++) { if (A[i] > A[i-1]) { count++; } else { if (count > maxCount) { maxCount = count; maxStartIndex = startIndex; } count = 1; startIndex = i; } } if (count > maxCount) { maxCount = count; maxStartIndex = startIndex; } return maxStartIndex; } ### 回答3: 线性表是一种基本的据结构,它可以用顺序存储或者链式存储表示。在顺序存储的线性表中,元素按照一定的顺序依次排列。现在需要设计一个算法来查找顺序存储的线性表中最长的连续递增子序列。 具体的算法如下: 1. 定义两个变量,分别表示当前正在处理的子序列的起点和终点。初始时,起点和终点都在表头,即起点为0,终点为1。 2. 定义一个变量,表示当前连续递增子序列长度。初始时,长度为1。 3. 遍历整个线性表,依次考虑每个元素。 4. 如果当前元素比前一个元素大,则说明当前元素可以加入到当前正在处理的递增子序列中,因此将终点向后移动一位,将长度加1。 5. 如果当前元素不比前一个元素大,则说明当前元素不能加入到当前正在处理的递增子序列中,因此需要重新开始一个新的递增子序列。此时,将起点和终点均移动到当前元素所在位置,将长度设为1。 6. 在遍历过程中,记录下最长的连续递增子序列长度以及起点和终点的位置。 7. 遍历结束后,即可得到最长的连续递增子序列长度以及起点和终点的位置。 8. 最后,根据起点和终点的位置,即可将最长的连续递增子序列输出。 总之,以上算法通过遍历整个顺序存储的线性表,依次处理每个元素,采用起点、终点和长度来记录递增子序列的信息,最终输出最长的连续递增子序列。这个算法的时间复杂度是O(n),其中n是线性表的长度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值