02|[数据结构] 将“昂贵”的时间复杂度转换成“廉价”的空间复杂度

接下来我们来一起看一下数据结构对于时间复杂度和空间复杂度之间转换的内容,以帮助你掌握提高代码效率方法。

通常面试官会追问:“这段代码的时间复杂度或者空间复杂度,是否还有降低的可能性?”如果没有经过专门的学习或训练,应聘者只能在各种漫无目的的尝试中去寻找答案。

别忘了,代码效率优化就是要将可行解提高到更优解,最终目标是:要采用尽可能低的时间复杂度和空间复杂度,去完成一段代码的开发。

你可能会困惑,优化代码需要积累非常多的实际经验,初学者通常很难找到最优的编码解决方案。其实,代码效率的提高也是有其核心思路的。掌握了下面所讲的核心思路后,对于绝大多数的编码任务,你都能找到最优或者逼近最优的编码方式。

时间昂贵、空间廉价
一段代码会消耗计算时间、资源空间,从而产生时间复杂度和空间复杂度,那么你是否尝试过将时间复杂度和空间复杂进行下对比呢?其实对比过后,你就会发现一个重要的现象。

假设一段代码经过优化后,虽然降低了时间复杂度,但依然需要消耗非常高的空间复杂度。 例如,对于固定数据量的输入,这段代码需要消耗几十 G 的内存空间,很显然普通计算机根本无法完成这样的计算。如果一定要解决的话,一个最简单粗暴的办法就是,购买大量的高性能计算机,来弥补空间性能的不足。

反过来,假设一段代码经过优化后,依然需要消耗非常高的时间复杂度。 例如,对于固定数据量的输入,这段代码需要消耗 1 年的时间去完成计算。如果在跑程序的 1 年时间内,出现了断电、断网或者程序抛出异常等预期范围之外的问题,那很可能造成 1 年时间浪费的惨重后果。很显然,用 1 年的时间去跑一段代码,对开发者和运维者而言都是极不友好的。

这告诉我们一个什么样的现实问题呢?代码效率的瓶颈可能发生在时间或者空间两个方面。如果是缺少计算空间,花钱买服务器就可以了。这是个花钱就能解决的问题。相反,如果是缺少计算时间,只能投入宝贵的人生去跑程序。即使你有再多的钱、再多的服务器,也是毫无用处。相比于空间复杂度,时间复杂度的降低就显得更加重要了。因此,你会发现这样的结论:空间是廉价的,而时间是昂贵的。

数据结构连接时空
假定在不限制时间、也不限制空间的情况下,你可以完成某个任务的代码的开发。这就是通常我们所说的暴力解法,更是程序优化的起点。

例如,如果要在 100 以内的正整数中,找到同时满足以下两个条件的最小数字:

能被 3 整除;
除 5 余 2。
最暴力的解法就是,从 1 开始到 100,每个数字都做一次判断。如果这个数字满足了上述两个条件,则返回结果。这是一种不计较任何时间复杂度或空间复杂度的、最直观的暴力解法。

当你有了最暴力的解法后,就需要用上一讲的方法评估当前暴力解法的复杂度了。如果复杂度比较低或者可以接受,那自然万事大吉。可如果暴力解法复杂度比较高的话,那就要考虑采用程序优化的方法去降低复杂度了。

为了降低复杂度,一个直观的思路是:梳理程序,看其流程中是否有无效的计算或者无效的存储。

我们需要从时间复杂度和空间复杂度两个维度来考虑。常用的降低时间复杂度的方法有递归、二分法、排序算法、动态规划等,这些知识我们都会在后续课程中逐一学习,这里我先不讲。而降低空间复杂度的方法,就要围绕数据结构做文章了。

降低空间复杂度的核****心思路就是,能用低复杂度的数据结构能解决问题,就千万不要用高复杂度的数据结构。

经过了前面剔除无效计算和存储的处理之后,如果程序在时间和空间等方面的性能依然还有瓶颈,又该怎么办呢?前面我们提到过,空间是廉价的,最不济也是可以通过购买更高性能的计算机进行解决的。然而时间是昂贵的,如果无法降低时间复杂度,那系统的效率就永远无法得到提高。

这时候,开发者们想到这样的一个解决思路。如果可以通过某种方式,把时间复杂度转移到空间复杂度的话,就可以把无价的东西变成有价了。这种时空转移的思想,在实际生活中也会经常遇到。

例如,马路上的十字路口,所有车辆在通过红绿灯时需要分批次通行。这样,就消耗了所有车辆的通行时间。如果要降低这里的时间损耗,人们就想到了修建立交桥。修建立交桥后,每个可能的转弯或直行的行进路线,都有专属的一条公路支持。这样,车辆就不需要全部去等待红绿灯分批通行了。最终,实现了用空间换取时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值