1,题目要求
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example 1:
- Input: 2
- Output: [0,1,1]
Example 2:
- Input: 5
- Output: [0,1,1,2,1,2]
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
给定非负整数num。 对于0≤i≤_n范围内的每个数字i,计算其二进制表示中的1的数量并将它们作为数组返回。
跟进:
很容易想出一个运行时间为O(n * sizeof(整数))的解决方案。 但你可以在线性时间O(n)/可能在一次通过吗?
空间复杂度应为O(n)。
你能像老板那样做吗? 不使用c ++或任何其他语言的__builtin_popcount之类的内置函数。
2,题目思路
对于这道题,在之前已经做过一次了,而且发现之前做的博客的记录挺详细的,这里直接把当时做的记录复制过来作为Top 100 Like的记录吧。
- 如果直接用暴力的方法,很简单。直接求出每一个数字的二进制的形式的1的个数,然后返回即可。这样做的时间复杂度较高,并不是O(n)。
- 另外,也可以直接用C++的内置的方法,直接求一个数字的二进制的1的个数。 但是题目希望我们不使用内置的位查找的方法,因此需要找第三种办法。
- 最后,还有一种办法是,从已经找到的数字的中寻找得到的解,然后利用这样的方法可以快速的找到目前的数字的1的个数,最后再将这个数字加入到列表中,方便之后的数字进行查找取值。这种方法比较好,因为在分析各个数字的二进制形式可以发现,凡是2的幂次,总是第一位为1,其他位全为0,所以总的1的位数为1。而因为题目是需要统计所有小于num的数字的二进制1的位数之和,因此,可以从已经获得的数字的二进制位之和的结果中进行计算,以此减少计算量。
3,代码实现
1,暴力求解
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res;
for(int i = 0;i<=num;i++)
res.push_back(binCount(i));
return res;
}
private:
int binCount(int n)
{
int res = 0;
while(n!=0)
{
res += n%2;
n /=2;
}
return res;
}
};
2,内置方法bitset
#include<bitset>
class Solution {
public:
vector<int> countBits(int num) {
vector<int> result(num + 1);
for(int i = 1; i < num + 1; ++i){
result[i] = bitset<32>(i).count();
}
return result;
}
};
3,从已经获得的结果中获取以减少计算
//在这种方法中,i&(i-1)的含义为,将i的从右往左的第一个1变为0;
//这样可以使得i变小,以便可以从已经找到的结果中寻找结果。
//最后,再加1给加回来即可。
class Solution {
public:
vector<int> countBits(int num) {
vector<int> ret(num+1, 0);
for (int i = 1; i <= num; ++i)
ret[i] = ret[i&(i-1)] + 1;
return ret;
}
};