详解Keras2.0 API: Keras.preprocessing.sequence.pad_sequences

keras.preprocessing.sequence.pad_sequences用于文本序列的填充和截断,确保所有序列具有相同长度。它支持在序列开始或结束处填充,默认值为0,适用于神经网络模型的输入。示例中展示了如何结合Tokenizer对文本进行分词和序列化,再进行填充处理。
摘要由CSDN通过智能技术生成

keras.preprocessing.sequence.pad_sequences 是 Keras 序列预处理工具中的一个函数,用于将序列进行填充(padding)和截断(truncation)

在机器学习任务中,通常需要将文本数据转换为数值化的表示形式才能输入到模型中进行训练。其中一种最简单的方法是将每个文本分词后映射到整数序列,然后将这些序列填充或截断到固定长度,以便能够输入到模型中。

keras.preprocessing.sequence.pad_sequences 函数可以完成以下任务:

  • 将序列进行填充或截断到指定长度
  • 可以在序列的开头或结尾添加填充项(默认为0)
  • 可以控制填充位置(左填充或右填充)

1、语法

keras.preprocessing.sequence.pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.0)
  • sequences:需要进行填充和截断的序列,可以是列表的列表、Numpy 数组等。
  • maxlen:序列的最大长度。如果指定,则长于该长度的序列将被截断,短于该长度的序列将被填充。
  • dtype:输出序列的数据类型。
  • padding:填充位置,默认为 'pre',表示在序列前面添加填充项。也可以设置为 'post',表示在序列后面添加填充项。
  • truncating:截断位置,默认为 'pre',表示从序列前面开始截断。也可以设置为 'post',表示从序列后面开始截断。
  • value:用于填充的值。


2、示例

from tensorflow import keras

texts = ['The cat sat on the mat.', 'The dog slept in the basket.']
tokenizer = keras.preprocessing.text.Tokenizer(num_words=1000)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)

padded_sequences = keras.preprocessing.sequence.pad_sequences(sequences, maxlen=10)

print(padded_sequences)

打印结果:

[[  0   0   0   0   1   2   3   4   5   6]
 [  0   0   0   0   0   0   1   7   8   9]]

在以上示例中,首先使用 Tokenizer 将两个句子分词并映射到整数序列,然后使用 pad_sequences 函数将这些序列填充或截断到长度为10。由于第一个句子比第二个句子长,因此需要进行填充操作。默认情况下,在序列的开头添加填充项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缘起性空、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值