D - Fliptile

题目:D - Fliptile
题意分析:
思路:利用二进制枚举第一行的所有状态 2 15 2^{15} 215当第一行翻转完后, 想要去掉第一行的1, 需要翻转第二行对应列的位置
依次类推, 当第i行确定时, 只有i+1行对应列的位置翻转才会影响到i
相似题:费解的开关

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 20;
const int INF = 0x3f3f3f3f; 
int m, n;
int g[N][N], mp[N][N];
int res[N][N], rres[N][N];


void turn(int x, int y)
{
    g[x][y] ^= 1;
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    for(int i = 0; i < 4; i ++)
    {
        int tx = x + dx[i];
        int ty = y + dy[i];
        if(tx < 0 || ty < 0 || tx >= m || ty >= n) continue;
        g[tx][ty] ^= 1;
    }
}

int main()
{
    cin >> m >> n;
    for(int i = 0; i < m; i ++)
        for(int j = 0; j < n; j ++) 
            cin >> g[i][j];
    
    memcpy(mp, g, sizeof g);
    
    int ans = INF;
    
    for(int state = 0; state < 1 << n; state ++)
    {
        memset(res, 0, sizeof res);
        int step = 0;
        for(int j = 0; j < n; j ++)
        {
            if(state >> j & 1)
            {
                turn(0, n - j - 1);
                res[0][n - j - 1] = 1;
                step ++;
            }
        }
        
        for(int i = 1; i < m; i ++)
        {
            for(int j = 0; j < n; j ++)
            {
                if(g[i - 1][j])
                {
                    turn(i, j);
                    res[i][j] = 1;
                    step ++;
                }
            }
        }
        int flag = 0;
        for(int j = 0; j < n; j ++)
            if(g[m - 1][j])
            {
               flag = 1; 
               break;
            }
        memcpy(g, mp, sizeof g);  // 不能放到最后
        
        if(flag) continue;
        if(ans > step)
        {
            ans = step;
            memcpy(rres, res, sizeof res);
        }
        
      
    }
    
    if(ans == INF) 
        cout << "IMPOSSIBLE" << endl;
    else
    {
        for(int i = 0; i < m; i ++)
        {
            for(int j = 0; j < n; j ++)
                cout << rres[i][j] << " ";
            cout << endl;
        }
    }
    
   
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值