PART1 树
在现实生活中,有很多具有层次的关系。层次管理具有很高的效率。在计算机中也是一样,树就实现了计算机中的层次,在查找修改信息方面提供了很大的方便。
之前在学习离散数学时已经对树有了了解,所以这里理解起来很容易。
树的定义: n(n≥0)个结点构成的有限集合。
当n=0时,称为空树。
对于任意一棵非空树,他都具有以下性质:
1.树中有一个特殊结点叫做根(root),可用r表示。
2.其余结点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每个集合本身又是一棵树,称为原来树的“子树(Sub Tree)”
图解
树与非树
树的一些基本术语
1.结点的度(Degree):结点的子树个数。
2.树的度:树的所有结点中最大的度数
3.叶结点(Leaf):度为0的结点。
4.父结点(Parent):有子树的结点是其子树的根结点的父结点。
5.子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点;子结点也称孩子结点。
6.兄弟结点(Sibling):具有同一父结点的各结点彼此是兄弟结点。
7.路径和路径长度:从结点n1到nk的路径为一个结点序列n1,n2,…,nk是ni+1的父结点。路径所包含边的个数为路径的长度。
8.祖先结点(Ancestor):沿树根到某一结点路径上所有结点都是这个结点的祖先结点。
9.子孙结点(Descendant):某一结点的子树中的所有结点是这个结点的子孙。
10.结点的层次(Level):规定根结点在1层,其他任一结点的层数是其父结点的层数加1.
11.树的深度(Depth):树中所有结点中最大层次是这棵树的深度。
PART2 树的表示
1.数组实现
用数组实现树可谓一个庞大的工程,数组是一组连续的存储空间,对父亲兄弟儿子的区分很难,不容易表现出树的层次。所以考虑用链表实现。
2.链表实现
方法一
但是用这种方法难免造成空间的浪费,因为我们必须根据结点的最大度来定义结构体,但是实际上又用不到那么多的空间。
方法二-兄弟儿子表示法
优点
1.结构统一
2.空间浪费小
这里需要引出一个新的概念
二叉树:一个有穷的结合点集合。
这个集合可以为空
若不为空,则它是由根节点和称为其左子树和右子树两个不香蕉的二叉树组成。
一般的树我们都可以用儿子兄弟的方法将其表示成二叉树的形式。
所以搞清楚二叉树尤为的重要。