GAN系列:论文阅读——MSGAN(Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis)

本文探讨了2019年CVPR会议上提出的MSGAN(Mode Seeking Generative Adversarial Networks),旨在解决条件GAN中的模式坍缩问题,提高图像生成的多样性。通过引入Distance Ratio作为衡量模式坍缩的指标,并修改损失函数以最大化Distance Ratio,MSGAN能够在图像合成、风格迁移等任务中实现更好的性能和泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇论文来自2019CVPR,用以解决conditional GAN中的mode collapse问题,改善图像生成的多样性。

mode collapse是指生成的图像多样性较差,非常接近数据集中的某一种,以试图蒙骗判别器。产生原因是:数据集中的图像可分为多个mode(其实就是几大类),有的mode中的图像比较多,称为large mode,有的称为small mode。对应到分布中,就是large mode是比较高的峰值,而small mode对应较低的峰值,采样可能性更小。因此如果生成large mode的图像,会产生更大的梯度,便于优化目标函数,同时也可以骗过判别器,因此生成器就会越来越趋向于生成large mode中的图像。可以结合下图理解:

上图中的M就表示mode,其中的M_1,M_3,M_5就是small mode,M_2,M_4可以看作large mode。

目前mode collapse的解决方法主要是针对GAN的,有两大类:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值