奇异值分解(SVD)原理小结

原文链接
  奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1、回顾特征值和特征向量

  我们首先回顾下特征值和特征向量的定义如下:
A x = λ x Ax = \lambda x Ax=λx
  其中 A A A是一个 n × n n×n n×n的矩阵, x x x是一个 n n n维向量,则我们说 λ \lambda λ是矩阵A的一个特征值,而 x x x是矩阵 A A A的特征值 λ \lambda λ所对应的特征向量。
  求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵 A A A n n n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n λ_1≤λ_2≤...≤λ_n λ1λ2...λn,以及这 n n n个特征值所对应的特征向量 { w 1 , w 2 , . . . w n } \{w_1,w_2,...w_n\} {w1,w2,...wn},,如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:
A = W Σ W − 1 A=WΣW^{−1} A=WΣW1
  其中 W W W是这 n n n个特征向量所张成的 n × n n×n n×n维矩阵,而 Σ Σ Σ为这 n n n个特征值为主对角线的 n × n n×n n×n维矩阵。

  一般我们会把 W W W的这 n n n个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 ||w_i||^2=1 wi2=1, 或者说 w T i w i = 1 w^{T_i}w_i=1 wTiwi=1,此时 W W W n n n个特征向量为标准正交基,满足 W T W = I W^TW=I WTW=I,即 W T = W − 1 W^T=W^{−1} WT=W1, 也就是说W为酉矩阵。

  这样我们的特征分解表达式可以写成:
A = W Σ W T A=WΣW^{T} A=WΣWT

  注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2、SVD的定义

  SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵 A A A是一个 m × n m×n m×n的矩阵,那么我们定义矩阵 A A A的SVD为:
A = U Σ V T A=UΣV^T A=UΣVT
  其中 U U U是一个 m × m m×m m×m的矩阵, Σ Σ Σ是一个 m × n m×n m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值, V V V是一个 n × n n×n n×n的矩阵。 U U U V V V都是酉矩阵,即满足 U T U = I , V T V = I U^TU=I,V^TV=I UTU=I,VTV=I。下图可以很形象的看出上面SVD的定义:
在这里插入图片描述

  那么我们如何求出SVD分解后的 U , Σ , V U,Σ,V U,Σ,V这三个矩阵呢?

  如果我们将 A A A的转置和 A A A做矩阵乘法,那么会得到 n × n n×n n×n的一个方阵 A T A A^TA ATA。既然 A T A A^TA ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A T A ) v i = λ i v i (A^TA)v_i=λ_iv_i (ATA)vi=λivi

  这样我们就可以得到矩阵 A T A A^TA ATA n n n个特征值和对应的 n n n个特征向量 v v v了。将 A T A A^TA ATA的所有特征向量张成一个 n × n n×n n×n的矩阵 V V V,就是我们SVD公式里面的 V V V矩阵了。一般我们将V中的每个特征向量叫做 A A A的右奇异向量。

  如果我们将 A A A A A A的转置做矩阵乘法,那么会得到 m × m m×m m×m的一个方阵 A A T AA^T AAT。既然 A A T AA^T AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A A T ) u i = λ i u i (AA^T)u_i=λ_iu_i (AAT)ui=λiui

  这样我们就可以得到矩阵 A A T AA^T AAT m m m个特征值和对应的 m m m个特征向量 u u u了。将 A A T AA^T AAT的所有特征向量张成一个 m × m m×m m×m的矩阵 U U U,就是我们SVD公式里面的 U U U矩阵了。一般我们将U中的每个特征向量叫做 A A A的左奇异向量。

   U U U V V V我们都求出来了,现在就剩下奇异值矩阵 Σ Σ Σ没有求出了。由于 Σ Σ Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值 σ σ σ就可以了。

  我们注意到:
A = U Σ V T ⇒ A V = U Σ V T V ⇒ A V = U Σ ⇒ A v i = σ i u i ⇒ σ i = A v i u i \begin{aligned} A=UΣV^T&⇒AV=UΣV^TV\\ &⇒AV=UΣ\\ &⇒Av_i=σ_iu_i\\ &⇒σ_i=\dfrac{Av_i}{u_i} \end{aligned} A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=uiAvi

   这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵 Σ Σ Σ

  上面还有一个问题没有讲,就是我们说 A T A A^TA ATA的特征向量组成的就是我们SVD中的 V V V矩阵,而 A A T AA^T AAT的特征向量组成的就是我们SVD中的 U U U矩阵,这有什么根据吗?这个其实很容易证明,我们以 V V V矩阵的证明为例。
A = U Σ V T ⇒ A T = V Σ T U T ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T \begin{aligned} A=UΣV^T&⇒A^T=VΣ^TU^T \\ &⇒A^TA=VΣ^TU^TUΣV^T=VΣ^2V^T \end{aligned} A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT
  上式证明使用了: U T U = I , Σ T Σ = Σ 2 U^TU=I,Σ^TΣ=Σ^2 UTU=I,ΣTΣ=Σ2。可以看出 A T A A^TA ATA的特征向量组成的的确就是我们SVD中的 V V V矩阵。类似的方法可以得到 A A T AA^T AAT的特征向量组成的就是我们SVD中的 U U U矩阵。

  进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ i = λ i \sigma_i = \sqrt{\lambda_i} σi=λi
\qquad 这样也就是说,我们可以不用 σ i = A v i u i σ_i=\dfrac{Av_i}{u_i} σi=uiAvi来计算奇异值,也可以通过求出 A T A A^TA ATA的特征值取平方根来求奇异值。

3、SVD计算举例

\qquad 这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵 A A A定义为:
A = ( 0 1 1 1 1 0 ) A=\left(\begin{array}{} 0&1\\ 1&1\\ 1&0 \end{array}\right) A=011110
\qquad 我们首先求出 A T A A^TA ATA A A T AA^T AAT
A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 ) A^TA=\left(\begin{array}{} 0&1&1\\ 1&1&0 \end{array}\right) \left(\begin{array}{} 0&1\\ 1&1\\ 1&0 \end{array}\right) = \left(\begin{array}{} 2&1\\ 1&2 \end{array}\right) ATA=(011110)011110=(2112)
A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 ) AA^T=\left(\begin{array}{} 0&1\\ 1&1\\ 1&0 \end{array}\right)\left(\begin{array}{} 0&1&1\\ 1&1&0 \end{array}\right) = \left(\begin{array}{} 1&1&0\\ 1&2&1\\ 0&1&1 \end{array}\right) AAT=011110(011110)=110121011
\qquad 进而求出 A T A A^TA ATA的特征值和特征向量:
λ 1 = 3 ; v 1 = ( 1 2 1 2 ) ; λ 2 = 1 ; v 2 = ( − 1 2 1 2 ) λ_1=3;v_1=\left(\begin{array}{} \dfrac{1}{\sqrt{2}} \\ \dfrac{1}{\sqrt{2}} \end{array}\right);λ_2=1;v_2=\left(\begin{array}{} -\dfrac{1}{\sqrt{2}} \\ \dfrac{1}{\sqrt{2}} \end{array}\right) λ1=3;v1=2 12 1;λ2=1;v2=2 12 1
\qquad 接着求 A A T AA^T AAT的特征值和特征向量:
λ 1 = 3 ; u i = ( 1 6 2 6 1 6 ) ; λ 2 = 1 ; u 2 = ( 1 2 0 − 1 2 ) ; λ 3 = 0 ; u 3 = ( 1 3 − 1 3 1 3 ) λ_1=3;u_i=\left(\begin{array}{} \dfrac{1}{\sqrt{6}} \\ \dfrac{2}{\sqrt{6}}\\ \dfrac{1}{\sqrt{6}} \end{array}\right);λ_2=1;u_2=\left(\begin{array}{} \dfrac{1}{\sqrt{2}} \\ 0\\ -\dfrac{1}{\sqrt{2}} \end{array}\right);λ_3=0;u_3=\left(\begin{array}{} \dfrac{1}{\sqrt{3}} \\ -\dfrac{1}{\sqrt{3}}\\ \dfrac{1}{\sqrt{3}} \end{array}\right) λ1=3;ui=6 16 26 1;λ2=1;u2=2 102 1;λ3=0;u3=3 13 13 1
\qquad 利用 A v i = σ i u i , i = 1 , 2 Av_i=σ_iu_i,i=1,2 Avi=σiui,i=1,2求奇异值:
( 0 1 1 1 1 0 ) ( 1 2 1 2 ) = σ 1 ( 1 6 2 6 1 6 ) ⇒ σ i = 3 \left(\begin{array}{} 0&1\\ 1&1\\ 1&0 \end{array}\right)\left(\begin{array}{} \dfrac{1}{\sqrt{2}} \\ \dfrac{1}{\sqrt{2}} \end{array}\right)=\sigma_1\left(\begin{array}{} \dfrac{1}{\sqrt{6}} \\ \dfrac{2}{\sqrt{6}}\\ \dfrac{1}{\sqrt{6}} \end{array}\right) \Rightarrow \sigma_i = \sqrt{3} 0111102 12 1=σ16 16 26 1σi=3
( 0 1 1 1 1 0 ) ( − 1 2 1 2 ) = σ 2 ( 1 2 0 − 1 2 ) ⇒ σ = 1 \left(\begin{array}{} 0&1\\ 1&1\\ 1&0 \end{array}\right)\left(\begin{array}{} -\dfrac{1}{\sqrt{2}} \\ \dfrac{1}{\sqrt{2}} \end{array}\right) = \sigma_2\left(\begin{array}{} \dfrac{1}{\sqrt{2}} \\ 0\\ -\dfrac{1}{\sqrt{2}} \end{array}\right) \Rightarrow \sigma =1 0111102 12 1=σ22 102 1σ=1
\qquad 当然,我们也可以用 σ i = λ i σ_i=\sqrt{\lambda_i} σi=λi 直接求出奇异值为 3 \sqrt{3} 3 和1.
\qquad 最终得到 A A A的奇异值分解为:
A = U Σ V T = ( 1 6 1 2 1 3 2 6 0 − 1 3 1 6 − 1 2 1 3 ) ( 3 0 0 1 0 0 ) ( 1 2 1 2 − 1 2 1 2 ) A=UΣV^T=\left(\begin{array}{} \dfrac{1}{\sqrt{6}}&\dfrac{1}{\sqrt{2}}&\dfrac{1}{\sqrt{3}} \\ \dfrac{2}{\sqrt{6}} &0 &-\dfrac{1}{\sqrt{3}}\\ \dfrac{1}{\sqrt{6}} & -\dfrac{1}{\sqrt{2}}&\dfrac{1}{\sqrt{3}} \end{array}\right)\left(\begin{array}{} \sqrt{3} & 0\\ 0&1\\ 0&0 \end{array}\right)\left(\begin{array}{} \dfrac{1}{\sqrt{2}}& \dfrac{1}{\sqrt{2}}\\ -\dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \end{array}\right) A=UΣVT=6 16 26 12 102 13 13 13 13 000102 12 12 12 1

4、SVD的一些性质

\qquad 上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

\qquad 对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:
A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T A_{m×n}=U_{m×m}Σ_{m×n}V_{n×n}^T≈U_{m×k}Σ_{k×k}V^T_{k×n} Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT
\qquad 其中 k k k要比 n n n小很多,也就是一个大的矩阵 A A A可以用三个小的矩阵 U m × k , Σ k × k , V k × n T U_{m×k},Σ_{k×k},V^T_{k×n} Um×k,Σk×k,Vk×nT来表示。如下图所示,现在我们的矩阵 A A A只需要灰色的部分的三个小矩阵就可以近似描述了。
在这里插入图片描述
\qquad 由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

5、SVD用于PCA

\qquad 在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵 X T X X^TX XTX的最大的 d d d个特征向量,然后用这最大的 d d d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 X T X X^TX XTX,当样本数多样本特征数也多的时候,这个计算量是很大的。

\qquad 注意到我们的SVD也可以得到协方差矩阵 X T X X^TX XTX最大的 d d d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵 X T X X^TX XTX,也能求出我们的右奇异矩阵 V V V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

\qquad 另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

\qquad 假设我们的样本是 m × n m×n m×n的矩阵 X X X,如果我们通过SVD找到了矩阵 X X T XX^T XXT最大的 d d d个特征向量张成的 m × d m×d m×d维矩阵 U U U,则我们如果进行如下处理:
X d × n ′ = U d × m T X m × n X^′_{d×n}=U^T_{d×m}X_{m×n} Xd×n=Ud×mTXm×n
\qquad 可以得到一个 d × n d×n d×n的矩阵 X ′ X^′ X,这个矩阵和我们原来的 m × n m×n m×n维样本矩阵 X X X相比,行数从 m m m减到了 k k k,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。

6、SVD小结

\qquad SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值