中文分词预处理之N最短路径法小结(转)

https://blog.csdn.net/TheAlgorithmArt/article/details/6876871

2019-06-18 22:53:57

阅读数 2

评论数 0

一文带你入门图论和网络分析

https://yq.aliyun.com/articles/623203

2019-06-18 16:51:28

阅读数 5

评论数 0

Django模板系统(非常详细)

Django模板系统

2019-04-14 01:45:14

阅读数 23

评论数 0

centos7安装python3

https://blog.csdn.net/elija940818/article/details/79238813

2019-04-09 23:13:21

阅读数 11

评论数 0

Centos7下载和安装教程

https://blog.csdn.net/qq_42570879/article/details/82853708

2019-04-09 23:00:29

阅读数 16

评论数 0

centos7安装并配置PostgreSQL

https://blog.csdn.net/DaSo_CSDN/article/details/75330009

2019-04-09 22:59:45

阅读数 14

评论数 0

centos7安装redis

https://www.cnblogs.com/zuidongfeng/p/8032505.html

2019-04-09 22:22:24

阅读数 11

评论数 0

sklearn中的交叉验证(Cross-Validation)

​ ​ ​ ​ ​原文:点击进入

2019-04-07 20:58:23

阅读数 25

评论数 0

特征工程-卡方检验

https://www.jianshu.com/p/807b2c2bfd9b

2019-03-06 11:02:14

阅读数 43

评论数 0

EM算法文章推荐

添加链接描述

2019-02-24 20:20:57

阅读数 27

评论数 0

因子分析文章推荐

https://www.cnblogs.com/jerrylead/archive/2011/05/11/2043317.html

2019-02-23 22:51:51

阅读数 27

评论数 0

关于SMO算法文章推荐

SMO算法 上面文章中KKT条件的推导过程

2019-02-14 10:57:17

阅读数 78

评论数 0

关于核函数的文章推荐

通俗易懂的文章 对上文的补充 正定矩阵与二阶导数的关系

2019-02-12 21:09:19

阅读数 37

评论数 0

多维高斯分布以及生成学习模型文章推荐

https://zhuanlan.zhihu.com/p/36522776

2019-02-06 16:33:21

阅读数 66

评论数 0

奇异值分解(SVD)原理详解

转自:点击进入 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧: 1)特征值: 如果说一个向量v是方阵A的特征向量,将一定可以...

2019-01-30 16:46:26

阅读数 42

评论数 0

PCA降维求特征值的原因

我看了几篇文章,知道了PCA降维思路,但始终不能理解,为什么通过求其特征值,然后去掉较小的特征值,再根据特征值求出特征向量最终能达到降维的目的。 如果你有相同的困惑,看下面的内容一定会有帮助。 看之前你需要了解协方差矩阵。了解特征值的求解方式。 PCA做的事情: 去噪声和冗余 噪声: 样本中某个主...

2019-01-20 17:44:38

阅读数 120

评论数 0

机器学习-lesson3(决策树和随机森林)

决策树 熵: 表示随机事件不确定性的度量 比如我们想预测一个人今天是否会出去打篮球,我们现有一些天气信息,如下 然后我们根据下面的熵值计算公式算出熵值 信息增益:表示特征X使得类Y的不确定性减少程度。 说白了就是通过一个决策节点以后熵值的减少量,减少量越大越好,通过对比每一种分类节点,选择信...

2018-12-11 17:24:11

阅读数 46

评论数 0

准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

点击进入原文. 现在我先假定一个具体场景作为例子。 假如某个班级有男生80人,女生20人,共计100人.目标是找出所有女生. 现在某人挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了. 作为评估者的你需要来评估(evaluation)下他的工作 首先我们可以计算准确率...

2018-12-05 21:16:47

阅读数 77

评论数 0

机器学习-lesson2(线性回归、梯度下降、逻辑回归)

线性回归 上图中的平面就是我们预测的结果,橙黄色的点就是真是值,可以发现预测结果和真是值之间是存在误差的,我们要做的就是将误差降到最低。 误差实际上是符合正态分布的,所以我们就可以将其应用于概率密度函数如下图中第二个公式当中。 似然函数就是上图最后一行的函数的连成,可以将上图第三个函数理解为边...

2018-11-29 23:07:16

阅读数 45

评论数 0

机器学习-lesson1(K近邻)

由于jupyter notebook上的笔记迁移到csdn上非常麻烦,需要上传到git,再嵌入到ifram,并且效果不好,所以直接截取了长图上传过来。

2018-11-27 15:39:22

阅读数 37

评论数 0

提示
确定要删除当前文章?
取消 删除