谱聚类原理总结

原文链接

\qquad 谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理做一个总结。

1. 谱聚类概述

\qquad 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,通过对所有数据点组成的图进行切图,让切图后不同的子图间边权重和尽可能的低,而子图内的边权重和尽可能的高,从而达到聚类的目的

2. 谱聚类基础之一:无向权重图

\qquad 对于一个图 G G G,我们一般用点的集合 V V V和边的集合 E E E来描述。即 G ( V , E ) G(V,E) G(V,E),其中 V V V即为我们数据集里面所有的点 ( v 1 , v 2 , … , v n ) (v_1,v_2,\dots,v_n) (v1,v2,,vn),对于 V V V中的任意两个点,可以有边连接,也可以没有边连接。我们定义权重 w i j w_{ij} wij为点 v i v_i vi v j v_j vj之间的权重,由于我们是无向图,所以 w i j = w j i w_{ij}=w_{ji} wij=wji

\qquad 对于有边连接的两个点 v i v_i vi v j v_j vj w i j > 0 w_{ij} > 0 wij>0,对于没有边连接的两个点 v i v_i vi v j v_j vj, w i j = 0 w_{ij} = 0 wij=0,对于图中的任意一个点 v i v_i vi,它的度 d i d_i di定义为和它相连的所有边的权重之和,即
d i = ∑ j = 1 n w i j d_i = \sum_{j=1}^n w_{ij} di=j=1nwij
\qquad 利用每个点度的定义,我们可以得到一个 n ∗ n n*n nn的度矩阵 D D D,它是一个对角矩阵,只有主对角线有值,对应第 i i i行的第 i i i个点的度数,定义如下:
D = ( d 1 … … … … d 2 … … ⋮ ⋮ ⋱ ⋮ … … … d n ) D=\left(\begin{array}{} d_1&\dots&\dots&\dots \\ \dots&d_2&\dots&\dots \\ \vdots&\vdots&\ddots&\vdots \\ \dots&\dots&\dots&d_n \end{array}\right) D=d1d2dn

\qquad 利用所有点之间的权重值,我们可以得到图的邻接矩阵 W W W,它也是一个 n ∗ n n*n nn的矩阵,第 i i i行的第 j j j个值对应我们的权重 w i j w_{ij} wij

\qquad 除此之外,对于点集 V V V的的一个子集 A ⊂ V A \subset V AV,我们定义:
∣ A ∣ : = 子 集 A 中 点 的 个 数 v o l ( A ) = ∑ i ∈ A d i |A| := 子集A中点的个数 \\ vol(A) = \sum_{i \in A} d_{i} A:=Avol(A)=iAdi

3. 谱聚类基础之二:相似矩阵

\qquad 邻接矩阵 W W W,它是由任意两点之间的权重值 w i j w_{ij} wij组成的矩阵。通常我们可以自己输入权重,但是在谱聚类中,我们只有数据点的定义,并没有直接给出这个邻接矩阵,那么怎么得到这个邻接矩阵呢?

\qquad 基本思想是,距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,不过这仅仅是定性,我们需要定量的权重值。一般来说,我们可以通过样本点距离度量的相似矩阵 S S S来获得邻接矩阵 W W W

\qquad 构建邻接矩阵 W W W的方法有三类。 ϵ \epsilon ϵ-邻近法,K邻近法和全连接法。

\qquad 对于 ϵ \epsilon ϵ-邻近法,它设置了一个距离阈值 ϵ \epsilon ϵ,然后用欧式距离 s i j s_{ij} sij度量任意两点 x i x_i xi x j x_j xj的距离。即相似矩阵的 s i j = ∣ ∣ x i − x j ∣ ∣ 2 s_{ij}=||x_i-x_j||^2 sij=xixj2,然后根据 s i j s_{ij} sij ϵ \epsilon ϵ的大小关系,来定义邻接矩阵 W W W如下:
W = { 0 s i j > ϵ ϵ s i j ≤ ϵ W=\begin{cases} 0 & s_{ij} > \epsilon \\ \epsilon & s_{ij} \le \epsilon \end{cases} W={0ϵsij>ϵsijϵ

\qquad 从上式可见,两点间的权重要不就是 ϵ \epsilon ϵ,要不就是0,没有其他的信息了。距离远近度量很不精确,因此在实际应用中,我们很少使用 ϵ \epsilon ϵ-邻近法。

\qquad 第二种定义邻接矩阵 W W W的方法是K邻近法,利用KNN算法遍历所有的样本点,取每个样本最近的k个点作为近邻,只有和样本距离最近的k个点之间的 w i j > 0 w_{ij}>0 wij>0。但是这种方法会造成重构之后的邻接矩阵W非对称,我们后面的算法需要对称邻接矩阵。为了解决这种问题,一般采取下面两种方法之一:

\qquad 第一种K邻近法是只要一个点在另一个点的K近邻中,则保留 s i j s_{ij} sij
w i j = w j i = { 0 x i ∉ K N N ( x j )   a n d   x j ∉ K N N ( x i ) e x p ( − ∣ ∣ x i − x j ∣ ∣ 2 2 σ 2 ) x i ∈ K N N ( x j )   o r   x j ∈ K N N ( x i ) w_{ij} = w_{ji} = \begin{cases} 0 & x_i \notin KNN(x_j) \ and \ x_j \notin KNN(x_i) \\ exp(-\dfrac{||x_i-x_j||^2}{2\sigma^2}) & x_i \in KNN(x_j) \ or \ x_j \in KNN(x_i) \end{cases} wij=wji=0exp(2σ2xixj2)xi/KNN(xj) and xj/KNN(xi)xiKNN(xj) or xjKNN(xi)

\qquad 第二种K邻近法是必须两个点互为K近邻中,才能保留 s i j s_{ij} sij
w i j = w j i = { 0 x i ∉ K N N ( x j )   o r   x j ∉ K N N ( x i ) e x p ( − ∣ ∣ x i − x j ∣ ∣ 2 2 σ 2 ) x i ∈ K N N ( x j )   a n d   x j ∈ K N N ( x i ) w_{ij} = w_{ji} = \begin{cases} 0 & x_i \notin KNN(x_j) \ or\ x_j \notin KNN(x_i) \\ exp(-\dfrac{||x_i-x_j||^2}{2\sigma^2}) & x_i \in KNN(x_j) \ and\ x_j \in KNN(x_i) \end{cases} wij=wji=0exp(2σ2xixj2)xi/KNN(xj) or xj/KNN(xi)xiKNN(xj) and xjKNN(xi)

\qquad 第三种定义邻接矩阵 W W W的方法是全连接法,相比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。最常用的是高斯核函数RBF,此时相似矩阵和邻接矩阵相同:
w i j = s i j = e x p ( − ∣ ∣ x i − x j ∣ ∣ 2 2 σ 2 ) w_{ij} = s_{ij} = exp(-\dfrac{||x_i-x_j||^2}{2\sigma^2}) wij=sij=exp(2σ2xixj2)

\qquad 在实际的应用中,使用第三种全连接法来建立邻接矩阵是最普遍的,而在全连接法中使用高斯径向核RBF是最普遍的。

4. 谱聚类基础之三:拉普拉斯矩阵

\qquad 单独把拉普拉斯矩阵(Graph Laplacians)拿出来介绍是因为后面的算法和这个矩阵的性质息息相关。它的定义很简单,拉普拉斯矩阵 L = D − W L=D-W L=DW D D D即为我们第二节讲的度矩阵,它是一个对角矩阵。而 W W W即为我们第二节讲的邻接矩阵,它可以由我们第三节的方法构建出。

\qquad 拉普拉斯矩阵有一些很好的性质如下:

\qquad 1)拉普拉斯矩阵是对称矩阵,这可以由 D D D W W W都是对称矩阵而得。

\qquad 2)由于拉普拉斯矩阵是对称矩阵,则它的所有的特征值都是实数。

\qquad 3)对于任意的向量 f f f,我们有:
f T L f = 1 2 ∑ i , j = 1 n w i j ( f i − f j ) 2 f^TLf = \dfrac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i-f_j)^2 fTLf=21i,j=1nwij(fifj)2
这个利用拉普拉斯矩阵的定义很容易得到如下:

D D D矩阵只有对角线有元素, W W W矩阵对角线没有元素
f T L f = f T D f − f T W f = ∑ i = 1 n d i f i 2 − ∑ i , j = 1 n w i j f i f j = 1 2 ( ∑ i = 1 n d i f i 2 − 2 ∑ i , j = 1 n w i j f i f j + ∑ j = 1 n d j f j 2 ) = 1 2 ∑ i , j = 1 n w i j ( f i − f j ) 2 \begin{aligned} f^TLf &= f^TDf - f^TWf = \sum_{i=1}^n d_i f_i^2-\sum_{i,j=1}^n w_{ij}f_if_j \\ &=\dfrac{1}{2}(\sum_{i=1}^nd_if_i^2-2\sum_{i,j=1}^n w_{ij}f_if_j + \sum_{j=1}^nd_jf_j^2) \\ &=\dfrac{1}{2}\sum_{i,j=1}^nw_{ij}(f_i-f_j)^2 \end{aligned} fTLf=fTDffTWf=i=1ndifi2i,j=1nwijfifj=21(i=1ndifi22i,j=1nwijfifj+j=1ndjfj2)=21i,j=1nwij(fifj)2

\qquad 4) 拉普拉斯矩阵是半正定的,且对应的 n n n个实数特征值都大于等于 0 0 0,即 0 ≤ λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n 0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n 0λ1λ2λn, 且最小的特征值为 0 0 0,这个由性质3很容易得出。

5. 谱聚类基础之四:无向图切图

\qquad 对于无向图 G G G的切图,我们的目标是将图 G ( V , E ) G(V,E) G(V,E)切成相互没有连接的k个子图,每个子图点的集合为: A 1 , A 2 , … , A k A_1,A_2,\dots,A_k A1,A2,,Ak,它们满足 A i ⋂ A j = ∅ A_i \bigcap A_j = \emptyset AiAj=,且 A i ⋃ A 2 ⋃ ⋯ ⋃ A k = V A_i \bigcup A_2 \bigcup \dots \bigcup A_k = V AiA2Ak=V

\qquad 对于任意两个子图点的集合 A , B ⊂ V , A ⋂ B = ∅ A,B \subset V,A \bigcap B = \emptyset A,BV,AB=,我们定义A和B之间的切图权重为:
W ( A , B ) = ∑ i ∈ A , j ∈ B w i j W(A,B) = \sum_{i \in A, j \in B} w_{ij} W(A,B)=iA,jBwij
\qquad 那么对于我们k个子图点的集合: A 1 , A 2 , … , A k A_1,A_2,\dots,A_k A1,A2,,Ak,我们定义切图cut为:
c u t ( A 1 , A 2 , … , A k ) = 1 2 ∑ i = 1 k W ( A i , A i ‾ ) cut(A_1,A_2,\dots,A_k) = \dfrac{1}{2} \sum_{i=1}^k W(A_i,\overline{A_i}) cut(A1,A2,,Ak)=21i=1kW(Ai,Ai)
\qquad 其中 A i ‾ \overline{A_i} Ai A i A_i Ai的补集,意为除 A i A_i Ai集外其他 V V V的子集的并集。

\qquad 那么如何切图可以让子图内的点权重和高,子图间的点权重和低呢?一个自然的想法就是最小化 c u t ( A 1 , A 2 , … , A k ) cut(A_1,A_2,\dots,A_k) cut(A1,A2,,Ak), 但是可以发现,这种极小化的切图存在问题,如下图:
在这里插入图片描述
\qquad 我们选择一个权重最小的边缘的点,比如C和H之间进行cut,这样可以最小化 c u t ( A 1 , A 2 , … , A k ) cut(A_1,A_2,\dots,A_k) cut(A1,A2,,Ak),但是却不是最优的切图,如何避免这种切图,并且找到类似图中"Best Cut"这样的最优切图呢?我们下一节就来看看谱聚类使用的切图方法。

6. 谱聚类之切图聚类

\qquad 为了避免最小切图导致的切图效果不佳,我们需要对每个子图的规模做出限定,一般来说,有两种切图方式,第一种是RatioCut,第二种是Ncut。下面我们分别加以介绍。

6.1 RatioCut切图

\qquad RatioCut切图为了避免第五节的最小切图,对每个切图,不光考虑最小化 c u t ( A 1 , A 2 , … , A k ) cut(A_1,A_2,\dots,A_k) cut(A1,A2,,Ak),它还同时考虑最大化每个子图点的个数,即:
R a t i o C u t ( A 1 , A 2 , … , A k ) = 1 2 ∑ i = 1 k W ( A i , A i ‾ ) ∣ A i ∣ RatioCut(A_1,A_2,\dots,A_k) = \dfrac{1}{2}\sum_{i=1}^k \dfrac{W(A_i,\overline{A_i})}{|A_i|} RatioCut(A1,A2,,Ak)=21i=1kAiW(Ai,Ai)

\qquad 那么怎么最小化这个RatioCut函数呢?牛人们发现,RatioCut函数可以通过如下方式表示。

\qquad 我们引入指示向量 h j ∈ { h 1 , h 2 , … , h k }   j = 1 , 2 , … , k h_j \in \{h_1,h_2,\dots,h_k\} \ j = 1,2,\dots,k hj{h1,h2,,hk} j=1,2,,k,对于任意一个向量 h j h_j hj,它是一个n维向量(n为样本数),我们定义 h i j h_{ij} hij为:
h i j = { 0 v i ∉ A j 1 ∣ A j ∣ v i ∈ A j h_{ij = }\begin{cases} 0 & v_i \notin A_j \\ \dfrac{1}{\sqrt{|A_{j}|}} & v_i \in A_j \end{cases} hij=0Aj 1vi/AjviAj

\qquad 那么我们对于 h i T L h i h_i^TLh_i hiTLhi有,:
h i T L h i = 1 2 ∑ m = 1 ∑ n = 1 w m n ( h m i − h n i ) 2 = 1 2 [ ∑ m ∈ A i , n ∉ A i w m n ( 1 ∣ A i ∣ − 0 ) 2 + ∑ m ∉ A i , n ∈ A i w m n ( 0 − 1 ∣ A i ∣ ) 2 ] = 1 2 ( ∑ m ∈ A i , n ∉ A i w m n 1 ∣ A i ∣ + ∑ m ∉ A i , n ∈ A i w m n 1 ∣ A i ∣ ) = 1 2 ( c u t ( A i , A i ‾ ) 1 ∣ A i ∣ + c u t ( A i ‾ , A i ) 1 ∣ A i ∣ ) = c u t ( A i , A i ‾ ) ∣ A i ∣ \begin{aligned} h_i^TLh_i &= \dfrac{1}{2}\sum_{m=1}\sum_{n=1}w_{mn}(h_{mi}-h_{ni})^2 \\ &=\dfrac{1}{2}[\sum_{m \in A_i,n\notin A_i} w_{mn}(\dfrac{1}{\sqrt{|A_i|}}-0)^2 + \sum_{m \notin A_i,n \in A_i}w_{mn}(0-\dfrac{1}{\sqrt{|A_i|}})^2] \\ &=\dfrac{1}{2}(\sum_{m \in A_i,n\notin A_i} w_{mn} \dfrac{1}{|A_i|} + \sum_{m \notin A_i,n \in A_i}w_{mn}\dfrac{1}{|A_i|}) \\ &= \dfrac{1}{2}(cut(A_i,\overline{A_i})\dfrac{1}{|A_i|} + cut(\overline{A_i},A_i)\dfrac{1}{|A_i|}) \\ &=\dfrac{cut(A_i,\overline{A_i})}{|A_i|} \end{aligned} hiTLhi=21m=1n=1wmn(hmihni)2=21[mAi,n/Aiwmn(Ai 10)2+m/Ai,nAiwmn(0Ai 1)2]=21(mAi,n/AiwmnAi1+m/Ai,nAiwmnAi1)=21(cut(Ai,Ai)Ai1+cut(Ai,Ai)Ai1)=Aicut(Ai,Ai)

\qquad 上述第一式用了上面第四节的拉普拉斯矩阵的性质3.
f T L f = 1 2 ∑ i , j = 1 n w i j ( f i − f j ) 2 f^TLf = \dfrac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i-f_j)^2 fTLf=21i,j=1nwij(fifj)2
\qquad 第二式用到了指示向量的定义,另外第三式用到了上述第5节 c u t cut cut,
c u t ( A 1 , A 2 , … , A k ) = 1 2 ∑ i = 1 k W ( A i , A i ‾ ) cut(A_1,A_2,\dots,A_k) = \dfrac{1}{2} \sum_{i=1}^k W(A_i,\overline{A_i}) cut(A1,A2,,Ak)=21i=1kW(Ai,Ai)
c u t ( A i , A i ‾ ) = 1 2 ( W ( A i , A i ‾ ) + W ( A i ‾ , A i ) ) = 1 2 ( ∑ m ∈ A i , n ∉ A i w m n + ∑ m ∉ A i , n ∈ A i w m n ) = W ( A i , A i ‾ ) \begin{aligned} cut(A_i,\overline{A_i}) &= \dfrac{1}{2}(W(A_i,\overline{A_i}) + W(\overline{A_i},A_i)) \\ &= \dfrac{1}{2} (\sum_{m \in A_i,n\notin A_i} w_{mn} +\sum_{m \notin A_i,n \in A_i}w_{mn} ) \\ & = W(A_i,\overline{A_i}) \end{aligned} cut(Ai,Ai)=21(W(Ai,Ai)+W(Ai,Ai))=21(mAi,n/Aiwmn+m/Ai,nAiwmn)=W(Ai,Ai)
c u t ( A i ‾ , A i ) = 1 2 ( ∑ m ∉ A i , n ∈ A i w m n + ∑ m ∈ A i , n ∉ A i w m n ) cut(\overline{A_i},A_i) = \dfrac{1}{2} (\sum_{m \notin A_i,n \in A_i}w_{mn} +\sum_{m \in A_i,n\notin A_i} w_{mn}) cut(Ai,Ai)=21(m/Ai,nAiwmn+mAi,n/Aiwmn)

\qquad 可以看出,对于某一个子图 i i i,它的RatioCut对应于 h i T L H i h_i^TLH_i hiTLHi
R a t i o C u t ( A 1 ) = 1 2 W ( A 1 , A 1 ‾ ) ∣ A 1 ∣ ∝ c u t ( A i , A i ‾ ) ∣ A i ∣ = h i T L H i RatioCut(A_1) = \dfrac{1}{2}\dfrac{W(A_1,\overline{A_1})}{|A_1|} \propto \dfrac{cut(A_i,\overline{A_i})}{|A_i|} = h_i^TLH_i RatioCut(A1)=21A1W(A1,A1)Aicut(Ai,Ai)=hiTLHi
R a t i o C u t ( A 1 , A 2 , … , A k ) = ∑ i = 1 k h i T L h i = ∑ i = 1 k ( H T L H ) i i = t r ( H T L H ) RatioCut(A_1,A_2,\dots,A_k) = \sum_{i=1}^k h_i^TLh_i = \sum_{i=1}^k (H^TLH)_{ii} = tr(H^TLH) RatioCut(A1,A2,,Ak)=i=1khiTLhi=i=1k(HTLH)ii=tr(HTLH)

\qquad 其中, t r ( H T L H ) tr(H^TLH) tr(HTLH)是矩阵的迹,即对角线的求和 H H H是归一化的正交基矩阵。也就是说,我们的RatioCut切图,实际上就是最小化我们的 t r ( H T L H ) tr(H^TLH) tr(HTLH),注意到 H T H = I H^TH=I HTH=I,则我们的切图优化目标为:
a r g   m i n ⎵ H      t r ( H T L H )     s . t .   H T H = I \underbrace{arg\ min}_H \ \ \ \ tr(H^TLH) \ \ \ s.t. \ H^TH=I H arg min    tr(HTLH)   s.t. HTH=I
\qquad 注意到我们H矩阵里面的每一个指示向量都是n维的,向量中每个变量的取值为0或者 1 ∣ A i ∣ \dfrac{1}{\sqrt{|A_i|}} Ai 1 2 n 2^n 2n种取值,有k个子图的话就有k个指示向量,共有 k 2 n k2^n k2n种H,因此找到满足上面优化目标的H是一个NP难的问题。

\qquad 注意观察 t r ( H T L H ) tr(H^TLH) tr(HTLH)中每一个优化子目标 h i T L h i h_i^TLh_i hiTLhi,其中 h h h是单位正交基, L为对称矩阵,此时 h i T L h i h_i^TLh_i hiTLhi的最大值为L的最大特征值,最小值是L的最小特征值。如果你对主成分分析PCA很熟悉的话,这里很好理解。在PCA中,我们的目标是找到协方差矩阵(对应此处的拉普拉斯矩阵L)的最大的特征值而在我们的谱聚类中,我们的目标是找到目标的最小的特征值,得到对应的特征向量,此时对应二分切图效果最佳。也就是说,我们这里要用到维度规约的思想来近似去解决这个NP难的问题。

\qquad 对于 h i T L h i h_i^TLh_i hiTLhi,我们的目标是找到最小的L的特征值,而对于 t r ( H T L H ) = ∑ i = 1 n h i T L h i tr(H^TLH)=\sum\limits_{i=1}^n h_i^TLh_i tr(HTLH)=i=1nhiTLhi,则我们的目标就是找到k个最小的特征值,一般来说,k远远小于n,也就是说,此时我们进行了维度规约,将维度从n降到了k,从而近似可以解决这个NP难的问题。

\qquad 通过找到L的最小的k个特征值,可以得到对应的k个特征向量,这k个特征向量组成一个nxk维度的矩阵,即为我们的H。一般需要对H矩阵按行做标准化,即:
h i j ∗ = h i j ∑ t = 1 k h i t 2 h_{ij}^* = \dfrac{h_{ij}}{\sqrt{\sum_{t=1}^kh_{it}^2}} hij=t=1khit2 hij
\qquad 由于我们在使用维度规约的时候损失了少量信息,导致得到的优化后的指示向量h对应的H现在不能完全指示各样本的归属,因此一般在得到nxk维度的矩阵H后还需要对每一行进行一次传统的聚类,比如使用K-Means聚类.

6.2 Ncut切图

\qquad Ncut切图和RatioCut切图很类似,但是把Ratiocut的分母 ∣ A i ∣ |A_i| Ai换成
v o l ( A i ) vol(A_i) vol(Ai)。 由于子图样本的个数多并不一定权重就大,我们切图时基于权重也更合我们的目标,因此一般来说Ncut切图优于RatioCut切图。
N c u t ( A 1 , A 2 , … , A k ) = 1 2 ∑ i = 1 k W ( A , A i ) v o l ( A i ) Ncut(A_1,A_2,\dots,A_k) = \dfrac{1}{2}\sum_{i=1}^k\dfrac{W(A,A_i)}{vol(A_i)} Ncut(A1,A2,,Ak)=21i=1kvol(Ai)W(A,Ai)
\qquad 对应的,Ncut切图对指示向量 h h h做了改进。注意到RatioCut切图的指示向量使用的是 1 ∣ A j ∣ \dfrac{1}{\sqrt{|A_j|}} Aj 1标示样本归属,而Ncut切图使用了子图权重 1 v o l ( A j ) \dfrac{1}{\sqrt{vol(A_j)}} vol(Aj) 1来标示指示向量 h h h,定义如下:
h i j = { 0 v i ∉ A j 1 v o l ( A j ) v i ∈ A j h_{ij} = \begin{cases} 0 & v_i \notin A_j \\ \dfrac{1}{\sqrt{vol(A_j)}} & v_i \in A_j \end{cases} hij=0vol(Aj) 1vi/AjviAj
\qquad 那么我们对于 h i T L h i h_i^TLh_i hiTLhi,有:
h i T L h i = 1 2 ∑ m = 1 ∑ n = 1 w m n ( h m i − h n i ) 2 = 1 2 [ ∑ m ∈ A i , n ∉ A i w m n ( 1 v o l ( A i ) − 0 ) 2 + ∑ m ∉ A i , n ∈ A i w m n ( 0 − 1 v o l ( A i ) ) 2 ] = 1 2 ( ∑ m ∈ A i , n ∉ A i w m n 1 v o l A i + ∑ m ∉ A i , n ∈ A i w m n 1 v o l ( A i ) ) = 1 2 ( c u t ( A i , A i ‾ ) 1 v o l ( A i ) + c u t ( A i ‾ , A i ) 1 v o l ( A i ) ) = c u t ( A i , A i ‾ ) v o l ( A i ) \begin{aligned} h_i^TLh_i &= \dfrac{1}{2}\sum_{m=1}\sum_{n=1}w_{mn}(h_{mi}-h_{ni})^2 \\ &=\dfrac{1}{2}[\sum_{m \in A_i,n\notin A_i} w_{mn}(\dfrac{1}{\sqrt{vol(A_i)}}-0)^2 + \sum_{m \notin A_i,n \in A_i}w_{mn}(0-\dfrac{1}{\sqrt{vol(A_i)}})^2] \\ &=\dfrac{1}{2}(\sum_{m \in A_i,n\notin A_i} w_{mn} \dfrac{1}{vol{A_i}} + \sum_{m \notin A_i,n \in A_i}w_{mn}\dfrac{1}{vol(A_i)}) \\ &= \dfrac{1}{2}(cut(A_i,\overline{A_i})\dfrac{1}{vol(A_i)} + cut(\overline{A_i},A_i)\dfrac{1}{vol(A_i)}) \\ &=\dfrac{cut(A_i,\overline{A_i})}{vol(A_i)} \end{aligned} hiTLhi=21m=1n=1wmn(hmihni)2=21[mAi,n/Aiwmn(vol(Ai) 10)2+m/Ai,nAiwmn(0vol(Ai) 1)2]=21(mAi,n/AiwmnvolAi1+m/Ai,nAiwmnvol(Ai)1)=21(cut(Ai,Ai)vol(Ai)1+cut(Ai,Ai)vol(Ai)1)=vol(Ai)cut(Ai,Ai)

\qquad 推导方式和RatioCut完全一致。也就是说,我们的优化目标仍然是
N c u t ( A 1 , A 2 , … , A k ) = ∑ i = 1 k h i T L h i = ∑ i = 1 k ( H T L H ) i i = t r ( H T L H ) Ncut(A_1,A_2,\dots,A_k) = \sum_{i=1}^k h_i^TLh_i = \sum_{i=1}^k (H^TLH)_{ii} = tr(H^TLH) Ncut(A1,A2,,Ak)=i=1khiTLhi=i=1k(HTLH)ii=tr(HTLH)
\qquad 但是此时我们的 H T H ≠ I H^TH \ne I HTH̸=I,而是 H T D H = I H^TDH=I HTDH=I。推导如下:
h i T D h i = ∑ j = 1 n h i j 2 d j = 1 v o l ( A i ) ∑ j ∈ A i d j = 1 v o l ( A i ) v o l ( A i ) = 1 h_i^TDh_i = \sum_{j=1}^n h_{ij}^2 d_{j} = \dfrac{1}{vol(A_i)}\sum_{j \in A_i}d_j = \dfrac{1}{vol(A_i)} vol(A_i) = 1 hiTDhi=j=1nhij2dj=vol(Ai)1jAidj=vol(Ai)1vol(Ai)=1
\qquad 也就是说,此时我们的优化目标最终为:
a r g   m i n ⎵ H      t r ( H T L H )     s . t .   H T D H = I \underbrace{arg\ min}_H \ \ \ \ tr(H^TLH) \ \ \ s.t. \ H^TDH=I H arg min    tr(HTLH)   s.t. HTDH=I
\qquad 此时我们的H中的指示向量 h h h并不是标准正交基,所以在RatioCut里面的降维思想不能直接用。怎么办呢?其实只需要将指示向量矩阵H做一个小小的转化即可。

\qquad 我们令 H = D − 1 / 2 F H=D^{-1/2}F H=D1/2F, 则: H T L H = F T D − 1 / 2 D D − 1 / 2 F T , H T D H = F T F = I H^TLH = F^TD^{-1/2}DD^{-1/2}F^T ,H^TDH=F^TF = I HTLH=FTD1/2DD1/2FT,HTDH=FTF=I,也就是说优化目标变成了:
a r g   m i n ⎵ H      t r ( F T D − 1 / 2 D D − 1 / 2 F T )     s . t .   F T F = I \underbrace{arg\ min}_H \ \ \ \ tr(F^TD^{-1/2}DD^{-1/2}F^T) \ \ \ s.t. \ F^TF=I H arg min    tr(FTD1/2DD1/2FT)   s.t. FTF=I
\qquad 可以发现这个式子和RatioCut基本一致,只是中间的 L L L变成了 D − 1 / 2 D D − 1 / 2 D^{-1/2}DD^{-1/2} D1/2DD1/2。这样我们就可以继续按照RatioCut的思想,求出 D − 1 / 2 D D − 1 / 2 D^{-1/2}DD^{-1/2} D1/2DD1/2的最小的前k个特征值,然后求出对应的特征向量,并标准化,得到最后的特征矩阵 F F F,最后对 F F F进行一次传统的聚类(比如K-Means)即可。

\qquad 一般来说, D − 1 / 2 D D − 1 / 2 D^{-1/2}DD^{-1/2} D1/2DD1/2,相当于对拉普拉斯矩阵 L L L做了一次标准化,即 L i j d i ∗ d j \dfrac{L_{ij}}{\sqrt{d_i*d_j}} didj Lij

7. 谱聚类算法流程

\qquad 总结下谱聚类的基本流程了。一般来说,谱聚类主要的注意点为相似矩阵的生成方式(参见第二节),切图的方式(参见第六节)以及最后的聚类方法(参见第六节)。

\qquad 最常用的相似矩阵的生成方式是基于高斯核距离的全连接方式,最常用的切图方式是Ncut。而到最后常用的聚类方法为K-Means。下面以Ncut总结谱聚类算法流程。

\qquad 输入:样本集 D = ( x 1 , x 2 , … , x n ) D=(x_1,x_2,\dots,x_n) D=(x1,x2,,xn),相似矩阵的生成方式, 降维后的维度 k 1 k_1 k1, 聚类方法,聚类后的维度 k 2 k_2 k2
\qquad 输出: 簇划分 C ( c 1 , c 2 , … , c k 2 ) C(c_1,c_2,\dots,c_{k_2}) C(c1,c2,,ck2)

\qquad 1) 根据输入的相似矩阵的生成方式构建样本的相似矩阵S
\qquad 2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D
\qquad 3)计算出拉普拉斯矩阵L
\qquad 4)构建标准化后的拉普拉斯矩阵 D − 1 / 2 D D − 1 / 2 D^{-1/2}DD^{-1/2} D1/2DD1/2
\qquad 5)计算 D − 1 / 2 D D − 1 / 2 D^{-1/2}DD^{-1/2} D1/2DD1/2最小的 k 1 k_1 k1个特征值所各自对应的特征向量 f f f
\qquad 6) 将各自对应的特征向量 f f f组成的矩阵按行标准化,最终组成 n ∗ k 1 n*k_1 nk1维的特征矩阵 F F F
\qquad 7)对F中的每一行作为一个 k 1 k_1 k1维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为 k 2 k_2 k2
\qquad 8)得到簇划分 C ( c 1 , c 2 , … , c k 2 ) C(c_1,c_2,\dots,c_{k_2}) C(c1,c2,,ck2)

8. 谱聚类算法总结

\qquad 谱聚类算法是一个使用起来简单,如果你掌握了谱聚类,相信你会对矩阵分析,图论有更深入的理解。同时对降维里的主成分分析也会加深理解。

\qquad 下面总结下谱聚类算法的优缺点。

\qquad 谱聚类算法的主要优点有:

\qquad 1)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到

\qquad 2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。

\qquad 谱聚类算法的主要缺点有:

\qquad 1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。

\qquad 2) 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值