谱聚类(Spectral Clustering) 原理与代码实例讲解

谱聚类(Spectral Clustering) - 原理与代码实例讲解

1. 背景介绍

1.1 聚类分析概述

1.1.1 聚类的定义与目的

聚类分析是一种无监督学习方法,旨在将数据集划分为若干个子集,使得同一子集内的数据点相似度较高,而不同子集间的数据点相似度较低。聚类可以帮助我们发现数据内在的结构和模式,广泛应用于模式识别、数据挖掘、图像分割等领域。

1.1.2 常见的聚类算法

目前已有多种聚类算法被提出,如 K-means、层次聚类、DBSCAN 等。这些算法各有优缺点,适用于不同类型的数据和场景。其中,谱聚类以其独特的图论视角和优异的性能而备受关注。

1.2 谱聚类的起源与发展

谱聚类最早由 Jianbo Shi 和 Jitendra Malik 在2000年提出[1],他们将图分割问题转化为图的最优划分问题,并用图的拉普拉斯矩阵的特征向量求解。此后,谱聚类被不断改进和推广,成为一种强大的聚类工具。

2. 核心概念与联系

2.1 图的相关概念

2.1.1 无向加权图

谱聚类基于图论,将数据集表示为一个无向加权图 $G=(V,E)$。其中,顶点集 $V$ 表示数据点,边集 $E$ 表示数据点间的相似度,边的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值