- 博客(27)
- 资源 (1)
- 收藏
- 关注
原创 自然语言处理 NLP(修改中)
文章目录词汇表征 word representation特征表示:词汇嵌入 word embedding语言模型使用词嵌入词汇表征 word representation词典和OneHot词向量:dictaandHarry⋯[a⋮and⋮harry⋮potter⋮<UNK>][1⋮0⋮0⋮0⋮0][0⋮1⋮0⋮0⋮0][0⋮0⋮1⋮0⋮0]⋯\begin{array}{ccccc}dict & a & and & Harry & \cdots \
2020-07-02 12:09:23 585
原创 图片风格转换
代价函数对图片C(Content),欲将其转换为图片S(Style)的风格,对生成的图片G,定义其代价函数为:J(G)=αJcontent(C,G)+βJstyle(S,G)J(G) = \alpha J_{content}(C, G) + \beta J_{style}(S, G)J(G)=αJcontent(C,G)+βJstyle(S,G)由内容代价和风格代价两部分构成。其中:内容代价: 设 a[l](C)a^{[l](C)}a[l](C) 和 a[l](G)a^{[l](G)}a[
2020-07-02 12:08:27 257
原创 XGBoost
文章目录Bagging和BoostingXGboost提升树——基于残差的训练模型构造目标函数树fK?f_{K}?fK? 树的复杂度Ω(fK)?\Omega(f_{K})?Ω(fK)?树的复杂度新的目标函数如何寻找树的形状?Bagging和Boosting相同点:都是集成模型。不同点:1. Bagging是过拟合的弱分类器的集成,算各模型预测值的加权平均,如随机森林;2. Boosting是欠拟合弱分类器的集成,算各模型预测值的和。XGboost提升树——基于残差的训练Example:训
2020-07-02 00:05:19 316
原创 循环神经网络——序列模型
文章目录循环神经网络 Recurrent Neural Networks前向传播代价函数反向传播门控循环单元 GRU (gated recurrent units)长短时记忆单元 LSTM (long short time memory)双向RNN (bidirectional RNN)深层RNN循环神经网络 Recurrent Neural Networks前向传播many-to-many 结构y^<1>y^<2>y^<3>y^<T>↑↑↑↑a<
2020-06-30 17:14:12 503
原创 卷积神经网络
文章目录一、卷积层1.1 二维卷积 (如灰度图像)滤波器 Filter填充 Padding卷积步长 Strided Covolution1.2 三维卷积 (如RGB图像)2 池化层3 全连接层:就是一般的神经网络层4 卷积层-池化层-全联接层一、卷积层1.1 二维卷积 (如灰度图像)滤波器 Filter1100111001110011100111001n×n图像∗10−110−110−1f×f滤波器=33−333−333−3(n−f+1)×(n−f+1)输出图像\begin{array}{|c|c
2020-06-29 13:45:31 2956
原创 用TensorFlow搭建神经网络
文章目录1 两种session会话创建方法2 变量3 placeholder4 用TensorBoard可视化神经网络import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tf%matplotlib1 两种session会话创建方法matrix1 = tf.constant([[3,3]])matrix2 = tf.constant([[2],[2]])product = tf.matmul(m
2020-06-23 22:10:47 598
原创 数据清洗和准备 (待更新)
文章目录1 处理缺失数据1 处理缺失数据关于缺失数据处理的函数:isnull、notnull、dropna、fillna
2020-06-22 14:38:15 161
原创 数据加载、存储和文件格式 (待更新)
文章目录1 读写文件格式的数据2 二进制数据格式3 Web APIs交互4 数据库交互1 读写文件格式的数据import numpy as npimport pandas as pd2 二进制数据格式3 Web APIs交互4 数据库交互
2020-06-22 14:19:48 115
原创 pandas入门 (待更新)
文章目录1 pandas的数据结构介绍1.1 Seriesimport pandas as pdfrom pandas import Series, DataFrameimport numpy as np1 pandas的数据结构介绍两个主要的数据结构:Series和DataFrame1.1 Series
2020-06-22 14:16:10 200 1
原创 NumPy基础:数组和矢量计算
文章目录0 为什么NumPy?——快1 Numpy的ndarray:一种多维数组对象1.1 创建ndarray1.2 ndarray的数据类型1.3 NumPy数组的运算1.4 基本的索引和切片1.5 切片索引1.6 布尔型索引1.7 花式索引1.8 数组转置和轴对换2 通用函数:快速的元素级数组函数3 利用数组进行数据处理3.1 将条件逻辑表述为数组运算3.2 数学和统计方法3.3 用于布尔型数组的方法3.4 排序3.5 唯一化以及其他的几何逻辑4 用于数组的文件输入输出5 线性代数6 伪随机数生成7 示
2020-06-22 13:52:09 544
原创 关于Jupyter的小技巧
文章目录一、Tab补全二、自省三、常用魔术方法四、键盘快捷键一、Tab补全二、自省在变量后使用?,可以显示对象的信息,如 print?使用双问号??会显示函数的源代码字符与通配符结合,如 np.*arr*?三、常用魔术方法%lsmagic:查看所有可用的魔术方法 (行魔法、单元魔法)%run%run +python文件名,即可运行该python文件,如 %run test.py%load+python文件名,即可加载该python文件,如 %load test.py%time p
2020-06-22 10:55:40 293
原创 排序与查找
文章目录1 顺序查找2 二分查找3 冒泡和选择查找4 希尔排序5 插入排序6 归并排序7 快速排序1 顺序查找# 无序表顺序查找def sequentialSearch(alist, item): pos = 0 found = False while pos < len(alist) and not found: if alist[pos] == item: found = True else:
2020-06-21 11:40:24 254
原创 递归算法
文章目录1 数列求和2 进制转换3 螺旋4 分形数5 谢尔宾斯基三角形6 汉诺塔7 找零兑换递归三定律:1、基本结束条件(最小规模问题的直接解决)2、递归算法必须能改变状态向基本结束调节演进(减小问题规模)3、调用自身(解决减小了规模的相同问题)1 数列求和def listsum(numlist): if len(numlist) == 1: return numlist[0] else: return numlist[0] + listsum
2020-06-21 11:34:17 269
原创 线性结构
文章目录1 线性结构1.1 栈1.2 队列1.3 双端队列1.4 链表2 应用2.1 回文词2.2 热土豆问题2.3 括号2.4 进制转换2.5 表达式转换1 线性结构1.1 栈# 创建栈class Stack: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def push(self, item)
2020-06-21 11:24:35 107
原创 关于python的一些操作
文章目录关于python的一些操作数据读取解决中文显示的问题numpy可视化sklearn特征工程——数据预处理模型评估与选择关于python的一些操作数据读取scipy.io.loadmat('name.mat')skimage.io.imread('name.png')skimage.io.imshow(data)解决中文显示的问题# matplotlib不会每次启动时都重新扫描所有的字体文件并创建字体索引列表,# 因此在复制完字体文件之后,需要运行下面的语句以重新创建字体索引列表f
2020-06-18 10:28:24 201
原创 优化算法
文章目录大数据集下的梯度下降1 batch gradient descent2 stochastic gradient descent3 mini-batch gradient descent4 在线学习5 map reduce大数据集下的梯度下降1 batch gradient descent每次更新都要计算全部训练样本的代价梯度,即:Repeat until convergence{θ:=θ−α∂∂θ∑i=1mJi(θ)}\begin{aligned}&Repea
2020-06-15 10:54:10 169
原创 推荐系统
文章目录推荐系统1 模型2 基于内容的推荐系统 (给定 x1,…,xmx_{1},\dots,x_{m}x1,…,xm , 估计 θ1,⋯ ,θn\theta_{1},\cdots,\theta_{n}θ1,⋯,θn)2.1 训练数据集2.2 代价函数梯度2.3 目标函数2.4 算法:梯度下降法3 给定 θ1,⋯ ,θn\theta_{1},\cdots,\theta_{n}θ1,⋯,θn , 估计 x1,…,xmx_{1},\dots,x_{m}x1,…,xm3.1 训练数据集3.2
2020-06-15 10:47:37 350
原创 异常检测
文章目录1 异常检测1.1 高斯分布1.2 异常检测算法1.3 异常检测 v.s. 监督学习1.4 特征选择1.4.1 特征变换1.4.2 特征的选择2 异常检测 (特征之间不独立的情况)2.1 多元高斯分布2.2 异常检测算法2.3 原始高斯 v.s. 多元高斯1 异常检测1.1 高斯分布假设每个特征都是服从高斯分布的:X(j)∼N(μj,σj2), j=1,⋯ ,nX^{(j)}\sim N(\mu_{j},\sigma_{j}^{2}),\ j=1,\cdots,nX(j)∼N(
2020-06-15 10:27:26 157
原创 K-均值聚类
文章目录K-均值聚类1 假设2 代价函数3 目标函数4 算法5 补充5.1 随机初始化5.2 K的选择——"肘部法则"6 代码K-均值聚类1 假设对于m个样本点,假设有K个类,每个类的中心分别为 μ1,⋯ ,μK∈Rn\mu_{1},\cdots,\mu_{K}\in \mathbb{R}^{n}μ1,⋯,μK∈Rn,样本点的分类为 C={ci},ci∈1,⋯ ,KC=\{c_{i}\}, c_{i}\in{1,\cdots,K}C={ci},ci∈1,⋯,K.2 代价函数J(c1,⋯ ,
2020-06-15 09:44:54 172
原创 支持向量机 (SVM)
文章目录支持向量机 (SVM)1 线性可分支持向量机1.1 线性可分支持向量机1.2 目标函数——硬间隔最大化1.3 学习的对偶算法2 软间隔支持向量机2.1 Hypothsis2.2 目标函数——最大化软间隔2.3 转化为对偶问题求解3 线性不可分支持向量机——引入核函数3.1 核函数3.2 Hypothesis——用ϕ(x)\phi(x)ϕ(x)代替xxx3.3 目标函数3.4 转化为对偶问题求解4 序列最小化 (SMO) 算法支持向量机 (SVM)1 线性可分支持向量机1.1 线性可分支持向量机
2020-06-12 18:56:12 368
原创 一些零碎的知识点
文章目录一些零碎的知识点知识点一:Lagrange对偶性知识点二:多类别分类: 一对多 (one-vs-all)知识点三:特征映射一些零碎的知识点知识点一:Lagrange对偶性参考李航老师的《统计学习方法》原始问题给定凸优化问题minxf(x)s.t.gi(x)≤0, i=1,⋯ ,mhj(x)=0, j=1,⋯ ,n \begin{aligned} \min_{x}\quad &f(x) \\ s.t.\quad &g_{i}(x) \l
2020-06-12 18:21:26 144
原创 机器学习算法评估与优化策略
文章目录机器学习算法评估与优化策略1 机器学习诊断1.1 数据集1.2 误差1.3 诊断偏差、方差问题1.4 利用学习曲线诊断2 策略3 查全率和查准率 (Precision/Recall)机器学习算法评估与优化策略1 机器学习诊断1.1 数据集训练集70%-测试集30%通过训练集让我们的模型学习得出其参数后,对测试集运用该模型。训练集60%-交叉验证集20%-测试集20% ✓\checkmark✓假设我们要在10个不同次数的二项式模型之间进行选择,模型选择的方法为:使用训练集
2020-06-12 18:01:16 641
原创 神经网络 (Neural Network)
文章目录神经网络 (Neural Network)0. 简单引入1. 数据2. 模型前向传播模型 (Forward Propogation)决策函数3. 代价函数4. 代价函数的梯度反向传播算法 (Backward Propogation)总结5. 目标函数算法:梯度下降6 预测及验证神经网络 (Neural Network)0. 简单引入只有输入层-输出层的神经网络 (感知机), 只能处理线性可分的问题, 如与(and)、或(or)、非(not):hθ(x)=g(θTx)h_{\theta}(x
2020-06-12 17:40:53 321
原创 逻辑回归和Softmax回归
逻辑回归 Logistic Regression1 逻辑回归 (Logistic Regression)1.1 数据 (Data)1.2 假设 (Hypothesis)1.3 对数似然函数 (Log Likelihood)1.4 代价函数 (Cost Function)1.5 代价函数的梯度 (Gradient)1.6 目标函数 (Goal)1.7 求解 θ∗\theta^*θ∗算法1 批量梯度下降 (Batch Gradient Descent)算法2 优化算法1.8 决策函数 (Decision Fun
2020-06-11 13:42:05 921
原创 多元线性回归
多变量线性回归1 多变量线性回归1.1 Data (数据)1.2 Hypothesis (假设)1.3 Cost Function (代价函数)1.4 Gradient (代价函数的梯度)1.5 Goal (目标)1.6 求解 θ∗\theta^*θ∗算法1 正规方程 (Normal Equation)算法2 批量梯度下降 (Batch Gradient Descent)两种算法比较2 正规化的线性回归模型2.1 Hypothesis (假设) (不变)2.2 Cost Function (代价函数)2.3
2020-06-11 12:42:17 251
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人