异常检测

本文介绍了异常检测的方法,主要围绕高斯分布和多元高斯分布展开。首先,讲解了在特征独立情况下,如何利用高斯分布进行异常检测,包括参数估计、决策函数和特征选择。接着,讨论了特征之间不独立时,采用多元高斯分布进行异常检测的步骤,并对比了原始高斯与多元高斯在异常检测上的差异。整个过程涉及到了数据预处理、模型训练、验证和测试,以及性能评估指标的选择。
摘要由CSDN通过智能技术生成

1 异常检测

1.1 高斯分布

假设每个特征都是服从高斯分布的:
X ( j ) ∼ N ( μ j , σ j 2 ) ,   j = 1 , ⋯   , n X^{(j)}\sim N(\mu_{j},\sigma_{j}^{2}),\ j=1,\cdots,n X(j)N(μj,σj2), j=1,,n

假设每个特征之间是相互独立的,
p ( x ; μ , σ 2 ) = ∏ j = 1 n p ( x ( j ) ; μ j , σ j 2 ) p(x;\mu,\sigma^2) = \prod_{j=1}^{n}p(x^{(j)};\mu_{j},\sigma_{j}^{2}) p(x;μ,σ2)=j=1np(x(j);μj,σj2)

决策函数:
y = { 1 , p ( x ) < ϵ   ( 异 常 ) 0 , p ( x ) ≥ ϵ   ( 正 常 ) y=\begin{cases}1, & p(x)<\epsilon\ (异常)\\ 0, & p(x)\geq \epsilon\ (正常) \end{cases} y={ 1,0,p(x)<ϵ ()p(x)ϵ ()

1.2 异常检测算法

给定10000个正常数据,20个异常数据。

Step1正常数据 (6000正常数据) 估计参数 μ j , σ j 2 , j = 1 , ⋯   , n \mu_{j},\sigma_{j}^{2},j=1,\cdots,n μj,σj2,j=1,,n (极大似然估计)
μ ^ j = x ‾ ( j ) = 1 m ∑ i = 1 m x i ( j ) σ ^ j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值