聚集系数

转自参考链接:http://www.cnblogs.com/startover/p/3141646.html
最近想要了解一下关于聚集系数的含义以及它在分析复杂网络中的用处,故转载这篇文章帮助理解
Clustering coefficient的定义有两种;全局的和局部的。

全局的算法基于triplet。triplet分为开放的triplet(open triplet)和封闭的triplet(closed triplet)两种(A triplet is three nodes that are connected by either two (open triplet) or three (closed triplet) undirected ties)。
可以用下面结构定义一个triplet

struct triplet { int key; set pair;};
例如下图{1,(2,3)}构成的triplet是封闭的,{3,(4,5)}构成的triplet是开放的

全局的Clustering coefficient比较简单,公式如下:Clustering coefficient(global) = number of closed triplet / number of triplet(closed+open)
以上图为例:

closed triplet ={1,(2,3)},{2,(1,3)},{3,(1,2)}

all triplet = {1,(2,3)},{2,(1,3)},{3,(1,2)},{3,(2,4)},{3,(4,5)},{3,(1,5)},{3,(2,5)},{3,(1,4)}

number of closed triplet = 3

number of triplet = 8

number of triplet / number of triplet = 3/8

局部的Clustering coefficient的计算方法:局部计算是面向节点的,对于节点vi,找出其直接邻居节点集合Ni,计算Ni构成的网络中的边数K,除以Ni集合可能的边数|Ni|*(|Ni|-1)/2例如:1节点的邻居节点(2,3),他们之间构成的边有1条,可能构成的边1条,因此1/1=12节点的邻居节点(1,3),他们之间构成的边有1条,可能构成的边1条,因此1/1=13节点的邻居节点(1,2,4,5),他们之间构成的边有1条,可能构成的边(4*3)/2条,因此1/6=1/6
4节点的邻居节点(3),他们之间构成的边有0条,可能构成的边0条,因此0
5节点的邻居节点(3),他们之间构成的边有0条,可能构成的边0条,因此0
则,5个节点平均local Clustering coefficient = (1+1+1/6)/5=13/30

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值