朴素贝叶斯分类器(带数学推导)

贝叶斯分类器

最小错误率决策

基于先验知识求解后验分类器

 两类问题:ω1和ω2

 先验概率:P(ω1) 和P(ω2)

 类概率密度函数:p(x|ω1) 和p(x|ω2)

 发生了一个随机事件,其观察值为:特征向量x

 求最小错误率分类器

决策规则:比较后验概率,取最大值进行类别判断,
在这里插入图片描述
决策规则一:比较分子 p(x|ω1)P(ω1) 和 p(x|ω2)P(ω2) ,取最大值

决策规则二:似然比

决策规则二:负对数似然比

最小错误率贝叶斯决策的特点

 已知条件多——各类概率分布

 最小错误率——概率意义上最优

 非线性分类器

 设计过程复杂(类概率密度函数)

最小风险贝叶斯决策

当决策带来不必要的风险时,就必须考虑降低决策的风险,定义决策与决策空间,定义损失函数,使用期望风险最小的类别作为决策结果。

已知条件:
在这里插入图片描述
期望风险求解并取min:
在这里插入图片描述
一般的,最小错误率贝叶斯决策等价于0-1损失函数的最小风险贝叶斯决策。

最小风险贝叶斯决策的特点

 已知条件多——各类概率分布及风险系数

 最小错误风险——概率意义上最优

 非线性分类器

 设计过程复杂

正态分布下的贝叶斯分类器设计

多元正态分布:
在这里插入图片描述
假设类条件概率符合二维正态分布,也就是P(x∣wi)
在这里插入图片描述
取对数并舍去无关项 −d/2ln2π 有:
在这里插入图片描述
则判别函数与分类决策边界为:
在这里插入图片描述
考虑一般情况,每一个样本的协方差矩阵都相等,类内各个特征维度间相互独立,且方差相同,但是先验概率不同:
img
则得到线性判别形式的判别函数:
在这里插入图片描述
决策边界为:
在这里插入图片描述
可以看出在这种特定的条件下,贝叶斯分类器属于线性分类器。

贝叶斯错误率计算

1.按理论公式求解

2.按错误率上界求解

3.实验估计错误率

(半)朴素贝叶斯分类器与贝叶斯网络

在使用贝叶斯决策时,有两个条件必须是已知的:

1.各种样本出现的整体先验概率
2.各类中取得特征空间中某个点的类条件概率

先验概率可以从大量数据统计中得到,类条件概率需要从数据统计中估计,根据某一类的样本在各个维度上的特征值来估计其概率分布情况。这个概率分布,是一个各个特征维度上的联合概率分布,如果各个维度不独立,则估计很困难。

所以做“属性条件独立性假设”,各个特征相互独立,这时叫朴素贝叶斯分类器。

如果对假设做一点放松,假设每个属性在类别之外最多仅依赖一个其他属性(父属性),就叫做半朴素贝叶斯分类器。

如果利用有向无环图刻画属性之间的依赖关系,使用条件概率表(离散属性)或条件概率密度函数(连续属性)表述属性的联合概率分布, 就可以有效表达属性间的条件独立性,这时就叫做贝叶斯网络,求解贝叶斯网络时,要通过评分函数评估贝叶斯网络与训练数据的契合程度。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值