模式识别:最小错误率贝叶斯决策分类

一、引言1.用贝叶斯决策理论分类要事先知道两个条件及要求:①.各类的先验概率:及特征向量的条件概率密度:或后验概率:②.决策分类的类别一定2.解决的问题:已知一定数目的样本,设计分类器,对未知样本进行分类。3.基于样本的两步贝叶斯决策①首先根据样本估计和记为和②然后用估计的概率密度设计贝叶斯分类器前提:训练样本的分布能代表样本的真实分布。每个样本集中...
摘要由CSDN通过智能技术生成

一、引言

1.用贝叶斯决策理论分类要事先知道两个条件及要求:

①.各类的先验概率:P(w_i)

及特征向量的条件概率密度:p(x|w_i)

或后验概率:P(w_i|x)

②.决策分类的类别一定

2.解决的问题:

已知一定数目的样本,设计分类器,对未知样本进行分类。

3.基于样本的两步贝叶斯决策

①首先根据样本估计P(w_i)p(x|w_i)

记为\widehat{P}(w_i)\widehat{p}(x|w_i)

②然后用估计的概率密度设计贝叶斯分类器

前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量,且有充分的训练样本

假设:当样本数N →∞时,如此得到的分类器收敛于理论上的最优解。 即满足:

\widehat{P}(w_i)P(w_i)\widehat{p}(x|w_i)p(x|w_i)

4.先验概率与条件概率密度估计

①类的先验概率估计:可依靠经验或训练数据中各类出现的频率估计,交容易实现;

②类条件概率密度的估计:概率密度函数包含了一个随机变量的全部信息,估计起来比较困难。

5.概率密度估计的两种基本方法

①参数估计:根据对问题的一般性的认识,假设随机变量服从某种分布,分布函数的参数通过训练数据来估计。如:ML 估计,Bayesian估计

②非参数估计:不用模型,而只利用训练数据本身对概率密度做估计。如:Parzen窗法,kn-近邻估计法。

下面只着重介绍参数估计

二、最大似然估计与贝叶斯参数估计

1.最大似然估计基本原理

先做以下假设:

①估计的参数记为:\theta。它是确定但未知的量(多个参数时为向量);

②每类的样本集记作:\chi_ii=1,2,...,c,

其中样本都是从密度为p(x|w_i)的总体中独立抽取出来的,满足独立同分布条件;

③类条件概率密度p(x|w_i)具有某种确定的函数形式,只是其中的参数\theta未知;

④各类样本只包含本类的分布信息,不同类别的参数是独立的,这样就可以分别对每一类单独处理。

现有以下样本:\chi=\{x_1,x_2,...,x_N\}

有了以上假设,则获得以上样本的概率即出现样本中各个样本的联合概率是:

l(\theta)=p(\chi|\theta)=p(x_1,x_2,...,x_N)=\prod_{i=1}^{N}{p(x_i|\theta)}

最大似然估计,通俗的理解,即为:参数为多少时观测值出现的概率最大。

最大似然估计量:\widehat{\theta}=arg \space max\space l(\theta)

还可以定义对数似然函数:

H(\theta)=lnl(\theta)=ln\prod_{i=1}^{N}{p(x_i|\theta)}=\sum_{i=1}^{N}{lnp(x_i|\theta)}

2.最大似然估计的求解

①若待估参数为一维变量,即待估参数只有一个,其最大似然估计量就是如下微分方程的解:

\frac{dl(\theta)}{d\theta}=0\frac{dH(\theta)}{d\theta}=0

当待估参数为多个未知参数组成的向量时,即:\theta=[\theta_1;...;\theta_s]

求解似然函数的最大值就需要对该参数的每一维分别求导,即用下面的梯度算子:

\nabla_\theta=[\frac{\partial}{\partial\theta_1};...,\frac{\partial}{\partial\theta_s}]

\nabla_\theta{l(\theta)}=0

\nabla_\theta{H(\theta)}=\sum_{i=1}^{N}{\nabla_\theta{lnp(x_i|\theta)}}=0

3.正态分布下的最大似然估计

仅以单变量正态分布情况估计其均值与方差:\theta=[\theta_1;\theta_2]=[\mu;\sigma^2]

单变量正态分布如下:

p(x|\theta)=\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2]

从上述正太分布式可以得到:

lnp(x_k|\theta)=-\frac{1}{2}ln2\pi\theta_2-\frac{1}{2\theta_2}(x_k-\theta_1)^2

分别对两个位置参数求偏导,得到࿱

  • 31
    点赞
  • 178
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值