HBase(1.4.13)安装和使用

本文详细介绍了HBase 1.4.12版本的下载、安装流程,包括单机模式和集群模式的配置,并提供了HBase Shell常用命令、管理平台使用、常见问题解决方案,以及HBase-Client基本使用方法,涵盖了命名空间、表、数据的操作,和Filter使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HBase 1.4.12 安装与使用

软件安装
使用
Shell 操作
HBase-Client 基本使用
Filter 使用
导入导出

软件安装
下载
官网地址:
http://hbase.apache.org/

下载列表:
http://hbase.apache.org/downloads.html

当前使用版本下载地址:
https://mirror.bit.edu.cn/apache/hbase/1.4.13/hbase-1.4.13-bin.tar.gz


安装(单机模式)

进入安装目录(个人喜好):
# cd /alidata/server/hadoop

下载文件:
# wget https://mirror.bit.edu.cn/apache/hbase/1.4.13/hbase-1.4.13-bin.tar.gz

解压文件:
# tar -zxvf hbase-1.4.13-bin.tar.gz

查看 JAVA_HOME 环境变量:
# echo $JAVA_HOME
/alidata/server/java/jdk1.8.0_65

配置 hbase-env.sh 文件 :
# vim hbase-1.4.13/conf/hbase-env.sh

# 约 28 行  (设置 JDK 目录)
# export JAVA_HOME=/usr/java/jdk1.8.0/ 改为
export JAVA_HOME=/alidata/server/java/jdk1.8.0_65

# 46 行, 47 行 注释, JKD7 才需要
# export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m -XX:ReservedCodeCacheSize=256m"
# export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m -XX:ReservedCodeCacheSize=256m"

# 约 126 行  (改为不使用内置的 zookeeper )
# export HBASE_MANAGES_ZK=true 改为
export HBASE_MANAGES_ZK=false

配置 hbase-site.xml 文件
# vim hbase-1.4.13/conf/hbase-site.xml

<configuration>
	<!-- 配置 HDFS 地址, 和存储根目录 -->
	<property>
		<name>hbase.rootdir</name>
		<value>hdfs://localhost:9000/hbase</value>
	</property>

	<!-- 配置 集群分布式 -->
	<property>
		<name>hbase.cluster.distributed</name>
		<value>true</value>
	</property>

	<!-- 配置 Master端口, 默认配置也是 16000 -->
	<property>
		<name>hbase.master.port</name>
		<value>16000</value>
	</property>

	<!-- 配置 Zookeeper 集群, 因为不是集群所有只设置 localhost -->
	<property>
		<name>hbase.zookeeper.quorum</name>
		<value>localhost</value>
	</property>

	<!-- 配置 Zookeeper 数据文件目录 -->
	<property>
		<name>hbase.zookeeper.property.datadir</name>
		<value>/alidata/server/hadoop/zookeeper-3.4.14/data</value>
	</property>
</configuration>


安装(集群模式)

服务器架构:

server-7server-8server-9
组件Master
RegionServer
RegionServerRegionServer

进入安装目录(个人喜好):
# cd /alidata/server/hadoop

下载文件:
# wget https://mirror.bit.edu.cn/apache/hbase/1.4.13/hbase-1.4.13-bin.tar.gz

解压文件:
# tar -zxvf hbase-1.4.13-bin.tar.gz

查看 JAVA_HOME 环境变量:
# echo $JAVA_HOME
/alidata/server/java/jdk1.8.0_65

配置 hbase-env.sh 文件 :
# vim hbase-1.4.13/conf/hbase-env.sh

# 约 28 行  (设置 JDK 目录)
# export JAVA_HOME=/usr/java/jdk1.8.0/ 改为
export JAVA_HOME=/alidata/server/java/jdk1.8.0_65

# 46 行, 47 行 注释, JKD7 才需要
# export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m -XX:ReservedCodeCacheSize=256m"
# export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m -XX:ReservedCodeCacheSize=256m"

# 约 126 行  (改为不使用内置的 zookeeper )
# export HBASE_MANAGES_ZK=true 改为
export HBASE_MANAGES_ZK=false

配置 hbase-site.xml 文件
# vim hbase-1.4.13/conf/hbase-site.xml

<configuration>
	<!-- 配置 HDFS 地址, 和存储根目录 -->
	<property>
		<name>hbase.rootdir</name>
		<value>hdfs://server-7:9000/hbase</value>
	</property>

	<!-- 配置 集群分布式 -->
	<property>
		<name>hbase.cluster.distributed</name>
		<value>true</value>
	</property>

	<!-- 配置 Master端口, 默认配置也是 16000 -->
	<property>
		<name>hbase.master.port</name>
		<value>16000</value>
	</property>

	<!-- 配置 Zookeeper 集群, 因为不是集群所有只设置 localhost -->
	<property>
		<name>hbase.zookeeper.quorum</name>
		<value>server-7,server-8,server-9</value>
	</property>

	<!-- 配置 Zookeeper 数据文件目录 -->
	<property>
		<name>hbase.zookeeper.property.datadir</name>
		<value>/alidata/server/hadoop/zookeeper-3.4.14/data</value>
	</property>
</configuration>

把Hadoop 的 core-site.xml 软连接到 HBase 的配置目录:
# ln -s /alidata/server/hadoop/hadoop-2.10.0/etc/hadoop/core-site.xml /alidata/server/hadoop/hbase-1.4.13/conf/core-site.xml

以上配置Server-7, Server-8, Server-9 都需要配置. 配置内容完全一致.


使用
常用命令

开启 Master :
# sh hbase-1.4.13/bin/hbase-daemon.sh start master

关闭 Master:
# sh hbase-1.4.13/bin/hbase-daemon.sh stop master

开启 RegionServer :
# sh hbase-1.4.13/bin/hbase-daemon.sh start regionserver

停止 RegionServer :
# sh hbase-1.4.13/bin/hbase-daemon.sh stop regionserver

集群群体开启命令:
# sh hbase-1.4.13/bin/start-hbase.sh
集群群体关闭命令:
# sh hbase-1.4.13/bin/stop-hbase.sh
使用server-7执行


管理平台
http://127.0.0.1:16010/master-status

常见问题
java.net.connectexception: call to localhost/127.0.0.1:16020 failed on connection exception
问题原因

Master 把访问regionserver的本地IP返回给了客户端, 客户端当然无法访问本地IP.

解决办法

# vim hbase-1.4.13/conf/hbase-site.xml

<property>
        <name>hbase.regionserver.hostname.disable.master.reversedns</name>
        <value>true</value>
</property>

操作

进入 Shell 操作模式
# sh hbase-1.4.13/bin/hbase shell


命名空间
# 创建命名空间
# 格式 create_namespace '命名空间名'
> create_namespace 'np'

# 查看命名空间列表
# 格式 list_namespace
> list_namespace

# 删除命名空间
# 格式 drop_namespace '命名空间名'
> drop_namespace 'np'

# 创建表
# 格式 create '命名空间名:表明','列族名'
> create 'np:student','info'


# 创建多个列簇表
# 格式 create '命名空间名:表明','列族名1', '列簇名2'
> create 'np:student','info','detail'


# 创建表, 指定列簇和版本数
# create '命名空间名:表明',{NAME => '列族名1', VERSIONS => 2}
> create 'np:student', {NAME => 'info', VERSIONS => 2}


# 创建预分区
# 格式 create '命名空间名:表明','列族名1','列簇名2',SPLITS=>['分区1','分区2','分区3']
> create 'np:student','info','detail',SPLITS=>['100','500','999']


# 查看表列表
# 格式 list
> list


# 删除表 (删除表之前必须先 disable 表)
# 格式 disable '命名空间名:表名'
> disable 'np:student'
# 格式 drop '命名空间名:表名'
> drop 'np:student'


# 清空表数据 不保留预分区
# 格式 truncate '命名空间名:表名' 
> truncate 'np:student'


# 清空表数据 保留预分区 建议使用此命令
# 格式 truncate_preserve '命名空间名:表名' 
> truncate_preserve 'np:student'


# 查询表的详细信息
# 格式 desc '命名空间名:表名'
> desc 'np:student'


数据
# 插入数据
# 格式 put '命名空间名:表名','Row_Key','列族名:字段名','数据'
> put 'np:student','1001','info:name','brando'


# 查询全部数据
# 格式 scan '命名空间名:表名'
> scan 'np:student'


# 查询单条数据
# 格式 get '命名空间名:表名','Row_key'
> get 'np:student','1001'


# 查询单条数据单个字段
# 格式 get '命名空间名:表名','Row_key','列族名:字段名'
> get 'np:student','1001','info:name'


# 查询单条数据-限定到列族
# 格式 get '命名空间名:表名','Row_key','列族名:字段名', '列族名:字段名'...
> get 'np:student','1001','info:name','info:age'...


# 查询单条数据多个字段
# 格式 get '命名空间名:表名','Row_key','列族名:字段名', '列族名:字段名'...
> get 'np:student','1001','info:name','info:age'...

# 统计表数据条数,HBase/bin 目录下执行.
# ./hbase org.apache.hadoop.hbase.mapreduce.RowCounter 'np:student'


HBase-Client 基本使用

引入包:
<dependency>
	<groupId>org.apache.hbase</groupId>
	<artifactId>hbase-client</artifactId>
	<version>1.4.13</version>
</dependency>			

外网连接配置

修改Window Host 文件

# 外网地址,     外网主机名称.
114.114.114.114	  server-7

获取连接
package org.brando;

import org.brando.tools.HBaseTools;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.util.Bytes;

import java.util.Iterator;
import java.util.Map;
import java.util.NavigableMap;
import java.util.Set;

public class HBaseTools {

    public static Connection createConnection() {
        Configuration conf = HBaseConfiguration.create();

        String quorum = "192.168.0.197";
        String znode = "/hbase";
        conf.set("hbase.zookeeper.quorum", quorum);
        conf.set("zookeeper.znode.parent", znode);
        conf.set("hbase.master", quorum + ":9001");
        Connection conn = null;
        try {
            conn = ConnectionFactory.createConnection(conf);
            Assert.assertNotNull(conn);
        } catch (IOException e) {
            e.printStackTrace();
        }
        return conn;
    }
    
    public static void close(Connection conn) {
        try {
            conn.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public static void closeTable(Table table) {
        try {
            table.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

创建表
Connection conn = HBaseTools.createConnection();

//设置表名, np(空间名):student(表名)
TableName tableName = TableName.valueOf("np:student");
HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);

//设置列簇, 可添加多个
HColumnDescriptor hColumnDescriptor = new HColumnDescriptor("info");
tableDescriptor.addFamily(hColumnDescriptor);

// 建表时设置 预分区,
byte[][] splitKeys = { Bytes.toBytes("3000"), Bytes.toBytes("6000"), Bytes.toBytes("9000") };
// 不使用预分区可以使用: conn.getAdmin().createTable(tableDescriptor) 创建表
conn.getAdmin().createTable(tableDescriptor, splitKeys);

Table table = conn.getTable(tableName);

HBaseTools.closeTable(table);
HBaseTools.close(conn);


获取表
	Connection conn = HBaseTools.createConnection();
    TableName tableName = TableName.valueOf("np:student");
    Table table = conn.getTable(tableName);

Put值
        Connection conn = HBaseTools.createConnection();
        TableName tableName = TableName.valueOf("np:student");

        Table table = conn.getTable(tableName);
        //设置rowkey
        Put put = new Put(Bytes.toBytes("rowkey"));
        put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes("brando"));
        // 注意:
        // Bytes.toBytes(28) 是 int 类型
        // Bytes.toBytes("28") 是 String 类型
        put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("age"), Bytes.toBytes(28));
        table.put(put);

获取列簇信息和值
        Get get = new Get(Bytes.toBytes("rowkey"));
        Result result = table.get(get);
        //info: 列簇
        NavigableMap<byte[], byte[]> navigableMap = result.getFamilyMap(Bytes.toBytes("info"));
        Set<Map.Entry<byte[], byte[]>> entries = navigableMap.entrySet();
        for(Map.Entry<byte[], byte[]> entry : entries) {
            System.out.println(new String(entry.getKey()));
            System.out.println(new String(entry.getValue()));
        }

直接获取值
	Get get = new Get(Bytes.toBytes("rowkey"));
    Result result = table.get(get);
    // info: 列簇, name: 列名
	byte[] nameByte = result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name"));
	String name = new String(nameByte);
	System.out.println("name:" + name);

Filter 使用

CompareOp 枚举值
    @Public
    @Stable
    public static enum CompareOp {
        LESS,				//小于
        LESS_OR_EQUAL,		//小于等于
        EQUAL,				//等于
        NOT_EQUAL,			//不等于
        GREATER_OR_EQUAL,	//大于等于
        GREATER,			//大于
        NO_OP;				//不操作
        private CompareOp() {
        }
    }

单列值过滤 (SingleColumnValueFilter)

作用: 比较一列值的大小, 或者是否相等.

//给出一个完整类, 后面就只给出 Filter 的使用.
package org.brando;

import org.brando.tools.HBaseTools;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.util.Bytes;

import java.util.Iterator;
import java.util.Map;
import java.util.NavigableMap;
import java.util.Set;

public class Launcher {

    public static void main(String[] args) throws Exception {
        Connection conn = HBaseTools.createConnection();
        // np:student: 空间名:表名
        TableName tableName = TableName.valueOf("np:student");
        Table table = conn.getTable(tableName);

        SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
                Bytes.toBytes("info"),	//列簇名
                Bytes.toBytes("age"),	//需要比较的列名
                CompareFilter.CompareOp.LESS,	//比较操作符, 小于
                Bytes.toBytes("20")		//比较的值
        );
   		// 翻译成SQL: SELECT * FROM student t WHERE t.age < 20
   		
        Scan scan = new Scan();
        scan.setFilter(singleColumnValueFilter);

        ResultScanner resultScanner = table.getScanner(scan);
        Iterator<Result> iterator = resultScanner.iterator();
        while (iterator.hasNext()) {
            Result result = iterator.next();
            NavigableMap<byte[], byte[]> navigableMap = result.getFamilyMap(Bytes.toBytes("info"));
            Set<Map.Entry<byte[], byte[]>> entries = navigableMap.entrySet();
            for(Map.Entry<byte[], byte[]> entry : entries) {
                System.out.println(new String(entry.getKey()));
                System.out.println(new String(entry.getValue()));
            }
        }
        HBaseTools.closeTable(table);
        HBaseTools.close(conn);
    }
}

多条件过滤 (FilterList)
package org.brando;

import com.atomic.tools.HBaseTools;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.util.Bytes;

import java.util.Iterator;
import java.util.Map;
import java.util.NavigableMap;
import java.util.Set;

public class Launcher {

    public static void main(String[] args) throws Exception {
        Connection conn = HBaseTools.createConnection();
        TableName tableName = TableName.valueOf("np:student");
        Table table = conn.getTable(tableName);

        SingleColumnValueFilter ageFilter = new SingleColumnValueFilter(
                Bytes.toBytes("info"),
                Bytes.toBytes("age"),
                CompareFilter.CompareOp.LESS,
                Bytes.toBytes(20)
        );

        SingleColumnValueFilter genderFilter = new SingleColumnValueFilter(
                Bytes.toBytes("info"),
                Bytes.toBytes("gender"),
                CompareFilter.CompareOp.EQUAL,
                Bytes.toBytes(0)
        );
		// 翻译成SQL: SELECT * FROM student t WHERE t.age < 20 AND t.gender = 0

        // 设置, 缺失值过滤.
        ageFilter.setFilterIfMissing(true);
        genderFilter.setFilterIfMissing(true);
        
        FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);
        filterList.addFilter(ageFilter);
        filterList.addFilter(genderFilter);

        Scan scan = new Scan();
        scan.setFilter(filterList);

        ResultScanner resultScanner = table.getScanner(scan);
        Iterator<Result> iterator = resultScanner.iterator();
        while (iterator.hasNext()) {
            Result result = iterator.next();
            NavigableMap<byte[], byte[]> navigableMap = result.getFamilyMap(Bytes.toBytes("info"));
            Set<Map.Entry<byte[], byte[]>> entries = navigableMap.entrySet();
            for(Map.Entry<byte[], byte[]> entry : entries) {
                System.out.println(new String(entry.getKey()));
                System.out.println(new String(entry.getValue()));
            }
        }
        HBaseTools.closeTable(table);
        HBaseTools.close(conn);
    }
}

行键过滤 (RowFilter)

该过滤器主要用于对 Rowkey 的过滤, 可以结合上面的多条件过滤器和下面的各种比较器来实现比较和过滤.

RowFilter rowFilter = new RowFilter(
	CompareFilter.CompareOp.EQUAL,	//比较操作符
	new BinaryPrefixComparator(Bytes.toBytes("001_01"))	
	//二进制前缀比较器, 按字典顺序比较.
);

正则比较器 (RegexStringComparator)
SingleColumnValueFilter nameFilter = new SingleColumnValueFilter(
	Bytes.toBytes("info"),
	Bytes.toBytes("name"),
	CompareFilter.CompareOp.EQUAL,  // 自定义比较器必须传 EQUAL
	new RegexStringComparator("^Bran")    // Bran 开头的正则表达式
);
// 翻译成SQL: SELECT * FROM student t WHERE t.name LIKE 'Bran%'

包含比较器 (SubstringComparator)
SingleColumnValueFilter nameFilter = new SingleColumnValueFilter(
	Bytes.toBytes("info"),
	Bytes.toBytes("name"),
	CompareFilter.CompareOp.EQUAL,  //自定义比较器必须传 EQUAL
	new SubstringComparator("ran")
);
// 翻译成SQL: SELECT * FROM student t WHERE t.name LIKE '%ran%'

二进制前缀比较器 (BinaryPrefixComparator)
SingleColumnValueFilter nameFilter = new SingleColumnValueFilter(
	Bytes.toBytes("info"),
	Bytes.toBytes("name"),
	CompareFilter.CompareOp.EQUAL,  //自定义比较器必须传 EQUAL
	new BinaryPrefixComparator(Bytes.toBytes("Bran"))
);
// 效率比正则快
// 翻译成SQL: SELECT * FROM student t WHERE t.name LIKE 'Bran%'

二进制比较器 (BinaryComparator)
SingleColumnValueFilter nameFilter = new SingleColumnValueFilter(
	Bytes.toBytes("info"),
	Bytes.toBytes("name"),
	CompareFilter.CompareOp.EQUAL,  //可以传入其他比较方式, 按字典顺序比较
	new BinaryComparator(Bytes.toBytes("Brando"))
);
// 单列值过滤 默认使用 二进制比较器 (BinaryComparator)
// 翻译成SQL: SELECT * FROM student t WHERE t.name = 'Brando'

导入导出

导出
hbase org.apache.hadoop.hbase.mapreduce.Export 'np:table_name' /tmp/hbase_export

导入
# 先创创建表结构在导入表内容.
# create 'np:table_name','i'
# hbase org.apache.hadoop.hbase.mapreduce.Import 'np:table_name' hdfs://127.0.0.1/tmp/hbase_export/
[编辑本段]Turbo C2.0    介绍      Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。    基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 [编辑本段]Turbo C 2.0的主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)    Turbo C++ 3.0   “Turbo C++ 3.0”软件是Borland公司在1992年推出的强大的——C语言程序设计与C++面向对象程序设计 的集成开发工具。它只需要修改一个设置选项,就能够在同一个IDE集成开发环境下设计和编译以标准 C 和 C++ 语法设计的程序文件。 [编辑本段]C 语言   C语言起始于1968年发表的CPL语言,它的许多重要思想都来自于Martin Richards在1969年研制的BCPL语言,以及以BCPL语言为基础的与Ken Thompson在1970年研制的B语言。Ken Thompson用B语言写了第一个UNIX操作系统。M.M.Ritchie1972年在B语言的基础上研制了C语言,并用C语言写成了第一个在PDP-11计算机上研制的UNIX操作系统。1977年出现了独立于极其的C语言编译文本《看移植C语言编译程序》,从而大大简化了把C语言编译程序移植到新环境中所做的工作,这本身也就使UNIX的日益广泛使用,C语言也迅速得到推广。   1983年美国国家标准化协会(ANSI)根据C语言问世以来的各种版本,对C语言的发展和扩充制定了新的标准,成为ANSI C。1987年ANSI又公布了新标准————87ANSI C。   目前在微型计算机上使用的有Microsoft C、Quick C、Turbo C等多种版本。这些不同的C语言版本,基本部分是相同的,但是在有关规定上有略有差异。   C 语言发展如此迅速, 而且成为最受欢迎的语言之一, 主要因为它具有强大的功能。许多著名的系统软件, 如DBASE Ⅲ PLUS、DBASE Ⅳ 都是由C 语言编写的。用C 语言加上一些汇编语言子程序, 就更能显示C 语言的优势了,象PC- DOS ,WORDSTAR等就是用这种方法编写的。归纳起来C 语言具有下列特点:   1. C是中级语言   它把高级语言的基本结构和语句与低级语言的实用性结合起来。C 语言可以象汇编语言一样对位、字节和地址进行操作, 而这三者是计算机最基本的工作单元。   2. C是结构式语言   结构式语言的显著特点是代码及数据的分隔化, 即程序的各个部分除了必要的信息交流外彼此独立。这种结构化方式可使程序层次清晰, 便于使用、维护以及调试。C 语言是以函数形式提供给用户的, 这些函数可方便的调用, 并具有多种循环、条件语句控制程序流向, 从而使程序完全结构化。   3. C语言功能齐全   C 语言具有各种各样的数据类型, 并引入了指针概念, 可使程序效率更高。另外C 语言也具有强大的图形功能, 支持多种显示器和驱动器。而且计算功能、逻辑判断功能也比较强大, 可以实现决策目的。   4. C语言适用范围大   C 语言还有一个突出的优点就是适合于多种操作系统, 如DOS、UNIX,也适用于多种机型。   C语言的优点很多,但是也存在一些缺点,如运算优先级太多,运算能力方面不像其它高级语言那样强,语法定义不严格等。但是这些都不能阻止C语言成为一门广受欢迎的计算机编程语言
Turbo C2.0 介绍   Turbo C2.0不仅是一个快捷、高效的编译程序,同时还有一个易学、易用的集成开发环境。使用Turbo C2.0无需独立地编辑、编译和连接程序,就能建立并运行C语言程序。因为这些功能都组合在Turbo 2.0的集成开发环境内,并且可以通过一个简单的主屏幕使用这些功能。 基本配置要求   Turbo C 2.0可运行于IBM-PC系列微机,包括XT,AT及IBM 兼容机。此时要求DOS2.0或更高版本支持,并至少需要448K的RAM,可在任何彩、单色80列监视器上运行。支持数学协处理器芯片,也可进行浮点仿真,这将加快程序的执行。 主要文件的简单介绍   INSTALL.EXE 安装程序文件   TC.EXE 集成编译   TCINST.EXE 集成开发环境的配置设置程序   TCHELP.TCH 帮助文件   THELP.COM 读取TCHELP.TCH的驻留程序README 关于Turbo C的信息文件   TCCONFIG.EXE 配置文件转换程序MAKE.EXE   项目管理工具TCC.EXE   命令行编译TLINK.EXE   Turbo C系列连接器TLIB.EXE   Turbo C系列库管理工具C0?.OBJ 不   同模式启动代码C?.LIB   不同模式运行库GRAPHICS.LIB   图形库EMU.LIB   8087仿真库FP87.LIB 8087库   *.H Turbo C头文件   *.BGI 不同显示器图形驱动程序   *.C Turbo C例行程序(源文件)   其中:上面的?分别为:T Tiny(微型模式)S Small(小模式)C Compact(紧凑模式)M Medium(中型模式)L Large(大模式)H Huge(巨大模式)
### 回答1: 在 TURBO C 2.0 中,您可以使用 biosdisk() 函数来格式化软盘。 下面是一段代码示例: ``` #include <stdio.h> #include <dos.h> int main() { // 定义扇区的大小 unsigned int sector_size[3] = {512, 512, 1024}; // 定义填充字节 unsigned char fill_char[3] = {0xF6, 0xF6, 0x48}; // 格式化磁道 700 的前三个扇区 for (int i = 0; i < 3; i++) { int result = biosdisk(2, 0, 70, 0, i + 1, 1, sector_size[i], fill_char[i]); if (result != 0) { printf("格式化扇区 %d 失败,返回码: %d\n", i + 1, result); } } return 0; } ``` 请注意,在使用 biosdisk() 函数之前,需要包含 dos.h 头文件。 希望这能帮到您! ### 回答2使用TURBO C 2.0语言,可以通过以下代码格式化软盘的70磁道0面,并分别格式化3个扇区,大小分别为512字节、512字节和1024字节。其中,前两个扇区使用F6填充,第三个扇区使用48填充。 ```c #include<stdlib.h> #include<stdio.h> #include<dos.h> void formatFloppyDisk(){ union REGS regs; regs.h.ah = 0x0;// To format a floppy disk, we set AH=0 regs.h.dl = 0;// Drive number (0=A, 1=B, etc.) regs.x.cx = 0;// Track number to format regs.h.dh = 0;// Head number regs.h.al = 0;// Sector size (0=default, 1=512 bytes, 2=1024 bytes, 3=2048 bytes etc.) int FILL_BYTE = 0;// The byte value to fill the sectors with during formatting int NUM_SECTORS = 3;// Number of sectors to format // To format 70th track 0th head regs.x.ax = 0x1301; // 0x13 = Reset disk system, 01H = Reset only specified drive int86(0x13, &regs, &regs); // BIOS interrupt to reset disk system for (int i=0; i<NUM_SECTORS; i++){ regs.x.ax = 0x3101; // 0x31 = Write Format, 01H = Format only current track regs.x.bx = 0x0001; // 0x00 = Drive A:, 01H = Head 1, 0 = Generate ID Field depending on the disk in the drive 1 = Keep the ID Field all zeros regs.x.cx = 0x0170; // Track number=70(0-79 range) regs.h.dh = 0x00; // Head number=0 or 1 regs.h.al = 0x02; // Control byte=always zero regs.x.dx = i+1; // Sector number starting from 1 regs.x.si = 0x0000; // segment and offset of read/write buffer regs.x.di = 0x0000; // segment and offset of result if(i == 2){ FILL_BYTE = 0x48; // Fill the third sector with 48 regs.x.ax = 0x3102; // 0x31 = Write Format, 02H = Format sequential tracks immediately following the one being formatted }else{ FILL_BYTE = 0xF6; // Fill the first two sectors with F6 } regs.h.ah = FILL_BYTE; // Fill the sector with specified byte int86(0x13, &regs, &regs); // BIOS interrupt to format the specified sector } } int main(){ formatFloppyDisk(); return 0; } ``` 上述代码使用了INT 0x13,即BIOS中断服务例程,来执行软盘格式化操作。通过设置寄存器的不同参数,可以指定要格式化的磁道、面、扇区大小和填充字节。在这个例子中,我们格式化了软盘70磁道0面的3个扇区,前两个扇区使用F6填充,第三个扇区使用48填充。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值