1/1+1/2^2+1/3^3+1/n^n求和

题目

求证:
∫ 0 1 1 x x d x = 1 1 1 + 1 2 2 + 1 3 3 + . . . + 1 n n \int_{0}^{1}\frac{1}{x^x}dx=\frac{1}{1^1 }+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^n} 01xx1dx=111+221+331+...+nn1

解答

1 x x = 1 e x l n x = e − x l n x \frac{1}{x^x}=\frac{1}{e^{xlnx}}=e^{-xlnx} xx1=exlnx1=exlnx
由泰勒展开:
e − x l n x = 1 + ( − x l n x ) + ( − x l n x ) 2 2 ! + ( − x l n x ) 3 3 ! + . . . + ( − x l n x ) n n ! e^{-xlnx}=1+(-xlnx)+\frac{(-xlnx)^2}{2!}+\frac{(-xlnx)^3}{3!}+...+\frac{(-xlnx)^n}{n!} exlnx=1+(xlnx)+2!(xlnx)2+3!(xlnx)3+...+n!(xlnx)n
∫ 0 1 ( − x l n x ) n n ! d x = ∫ 0 1 ( − 1 ) n ( x l n x ) n n ! d x = ( − 1 ) n ∫ 0 1 ( l n x ) n x n n ! d x = ( − 1 ) n ∫ 0 1 ( l n x ) n n ! d ( x n + 1 n + 1 ) = ( − 1 ) n ∫ 0 1 ( l n x ) n ( n + 1 ) ! d ( x n + 1 ) = ( − 1 ) n ( n + 1 ) ! ∫ 0 1 ( l n x ) n d ( x n + 1 ) \int_{0}^{1}\frac{(-xlnx)^n}{n!} dx \\=\int_{0}^{1}\frac{(-1)^n(xlnx)^n}{n!}dx \\=(-1)^n\int_{0}^{1}\frac{(lnx)^nx^n}{n!}dx \\=(-1)^n\int_{0}^{1}\frac{(lnx)^n}{n!}d(\frac{x^{n+1}}{n+1}) \\=(-1)^n\int_{0}^{1}\frac{(lnx)^n}{(n+1)!}d(x^{n+1}) \\=\frac{(-1)^n}{(n+1)!}\int_{0}^{1}{(lnx)^n}d(x^{n+1}) 01n!(xlnx)ndx=01n!(1)n(xlnx)ndx=(1)n01n!(lnx)nxndx=(1)n01n!(lnx)nd(n+1xn+1)=(1)n01(n+1)!(lnx)nd(xn+1)=(n+1)!(1)n01(lnx)nd(xn+1)
x n + 1 = t x^{n+1}=t xn+1=t,则 ( l n x ) n = ( l n t ) n ( n + 1 ) n (lnx)^n=\frac{(lnt)^n}{(n+1)^n} (lnx)n=(n+1)n(lnt)n
∫ 0 1 ( − x l n x ) n n ! d x = ( − 1 ) n ( n + 1 ) ! ( n + 1 ) n ∫ 0 1 ( l n t ) n d ( t ) = ( − 1 ) n ( n + 1 ) ! ( n + 1 ) n ( [ t ( l n t ) n ∣ 0 1 ] − ∫ 0 1 n ( l n t ) n − 1 d ( t ) ) = ( − 1 ) n ( n + 1 ) ! ( n + 1 ) n ( − ∫ 0 1 n ( l n t ) n − 1 d ( t ) ) \int_{0}^{1}\frac{(-xlnx)^n}{n!} dx \\=\frac{(-1)^n}{(n+1)!(n+1)^n}\int_{0}^{1}{(lnt)^n}d(t) \\=\frac{(-1)^n}{(n+1)!(n+1)^n}([t(lnt)^n\bigg|_{0}^{1}]-\int_{0}^{1}n{(lnt)^{n-1}}d(t)) \\=\frac{(-1)^n}{(n+1)!(n+1)^n}(-\int_{0}^{1}n{(lnt)^{n-1}}d(t)) 01n!(xlnx)ndx=(n+1)!(n+1)n(1)n01(lnt)nd(t)=(n+1)!(n+1)n(1)n([t(lnt)n01]01n(lnt)n1d(t))=(n+1)!(n+1)n(1)n(01n(lnt)n1d(t))
由上式可知,
∫ 0 1 ( l n t ) n d ( t ) = − ∫ 0 1 n ( l n t ) n − 1 d ( t ) = ( − n ) ∫ 0 1 ( l n t ) n − 1 d ( t ) = ( − n ) ( − ( n − 1 ) ) ∫ 0 1 ( l n t ) n − 2 d ( t ) = ( − n ) ( − ( n − 1 ) ) ( − ( n − 2 ) ) ∫ 0 1 ( l n t ) n − 3 d ( t ) = . . . = ( − 1 ) n ( n ! ) ∫ 0 1 1 d t = ( − 1 ) n ( n ! ) \int_{0}^{1}{(lnt)^n}d(t) \\=-\int_{0}^{1}n{(lnt)^{n-1}}d(t) \\=(-n)\int_{0}^{1}{(lnt)^{n-1}}d(t) \\=(-n)(-(n-1))\int_{0}^{1}{(lnt)^{n-2}}d(t) \\=(-n)(-(n-1))(-(n-2))\int_{0}^{1}{(lnt)^{n-3}}d(t) \\=... \\=(-1)^n(n!)\int_{0}^{1}1dt \\=(-1)^n(n!) 01(lnt)nd(t)=01n(lnt)n1d(t)=(n)01(lnt)n1d(t)=(n)((n1))01(lnt)n2d(t)=(n)((n1))((n2))01(lnt)n3d(t)=...=(1)n(n!)011dt=(1)n(n!)
因此,
∫ 0 1 ( − x l n x ) n n ! d x = ( − 1 ) n ( n + 1 ) ! ( n + 1 ) n ∫ 0 1 ( l n t ) n d ( t ) = ( − 1 ) n ( n + 1 ) ! ( n + 1 ) n ( − 1 ) n ( n ! ) = 1 ( n + 1 ) n + 1 \int_{0}^{1}\frac{(-xlnx)^n}{n!} dx \\=\frac{(-1)^n}{(n+1)!(n+1)^n}\int_{0}^{1}{(lnt)^n}d(t) \\=\frac{(-1)^n}{(n+1)!(n+1)^n}(-1)^n(n!) \\=\frac{1}{(n+1)^{n+1}} 01n!(xlnx)ndx=(n+1)!(n+1)n(1)n01(lnt)nd(t)=(n+1)!(n+1)n(1)n(1)n(n!)=(n+1)n+11
∫ 0 1 1 x x d x = ∫ 0 1 1 + ∑ n = 1 + ∞ ( − x l n x ) n n ! d x = 1 1 1 + 1 2 2 + 1 3 3 + . . . + 1 n n \int_{0}^{1}\frac{1}{x^x}dx \\=\int_{0}^{1}1+\sum_{n=1}^{+\infty}\frac{(-xlnx)^n}{n!}dx \\=\frac{1}{1^1 }+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^n} 01xx1dx=011+n=1+n!(xlnx)ndx=111+221+331+...+nn1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值