定积分的特殊计算方法
部分不能直接用牛顿-莱布尼兹公式计算的定积分的解法
1交换积分顺序
∫ 0 1 l n ( 1 + x ) 1 + x 2 d x = ∫ 0 1 l n ( 1 + x y ) ∣ 0 1 1 + x 2 d x = ∫ 0 1 ∫ 0 1 x ( 1 + x y ) ( 1 + x 2 ) d y d x = ∫ 0 1 ∫ 0 1 x ( 1 + x y ) ( 1 + x 2 ) d x d y = ∫ 0 1 1 1 + y 2 ∫ 0 1 ( x + y 1 + x 2 − y 1 + x y ) d x d y = ∫ 0 1 1 1 + y 2 ( 1 2 l n ( 1 + x 2 ) + y a r c t a n ( x ) − l n ( 1 + x y ) ∣ 0 1 ) d y = ∫ 0 1 1 1 + y 2 ( 1 2 l n ( 2 ) + π 4 y − l n ( 1 + y ) ) d y = π 4 l n ( 2 ) − ∫ 0 1 l n ( 1 + y ) 1 + y 2 d y ∫ 0 1 l n ( 1 + x ) 1 + x 2 d x = π 8 l n ( 2 ) \int_0^1\frac{ln(1+x)}{1+x^2}dx \\=\int_0^1\frac{ln(1+xy)\bigg|_{0}^{1}}{1+x^2}dx \\ \\=\int_0^1\int_0^1\frac{x}{(1+xy)(1+x^2)}dydx \\=\int_0^1\int_0^1\frac{x}{(1+xy)(1+x^2)}dxdy \\=\int_0^1 \frac{1}{1+y^2}\int_0^1 (\frac{x+y}{1+x^2}-\frac{y}{1+xy})dxdy \\=\int_0^1 \frac{1}{1+y^2}(\frac{1}{2} ln(1+x^2)+yarctan(x)-ln(1+xy)\bigg|_0^1) dy \\=\int_0^1 \frac{1}{1+y^2}(\frac{1}{2} ln(2)+\frac{\pi}{4}y-ln(1+y)) dy \\=\frac{\pi}{4} ln(2)-\int_0^1\frac{ln(1+y)}{1+y^2}dy \\\int_0^1\frac{ln(1+x)}{1+x^2}dx=\frac{\pi}{8} ln(2) ∫011+x2ln(1+x)dx=∫011+x2ln(1+xy)∣∣∣∣01dx=∫01∫01(1+xy)(1+x2)xdydx=∫01∫01(1+xy)(1+x2)xdxdy=∫011+y21∫01(1+x2x+y−1+xyy)dxdy=∫011+y21(21ln(1+x2)+yarctan(x)−ln(1+xy)∣∣∣∣01)dy=∫011+y21(21ln(2)+4πy−ln(1+y))dy=4πln(2)−∫011+y2ln(1+y)dy∫011+x2ln(1+x)dx=8πln(2)
2利用夹逼定理
∫ 0 + ∞ e − x 2 d x = ( ∫ 0 + ∞ e − x 2 d x ) ( ∫ 0 + ∞ e − y 2 d y ) = ∫ 0 + ∞ ∫ 0 + ∞ e − ( x 2 + y 2 ) d x d y = ∫ 0 π 2 ∫ 0 + ∞ e − ρ 2 ρ d ρ d θ = ∫ 0 π 2 1 2 d θ = π 4 \int_0^{+\infty} e^{-x^2} dx \\=\sqrt{(\int_0^{+\infty} e^{-x^2} dx) (\int_0^{+\infty} e^{-y^2} dy)} \\=\sqrt{\int_0^{+\infty} \int_0^{+\infty} e^{-(x^2+y^2)} dx dy} \\=\sqrt{\int_0^{\frac{\pi}{2}} \int_0^{+\infty} e^{-\rho^2} \rho d\rho d\theta} \\=\sqrt{\int_0^{\frac{\pi}{2}} \frac{1}{2} d\theta} \\=\sqrt{\frac{\pi}{4}} ∫0+∞e−x2dx=(∫0+∞e−x2dx)(∫0+∞e−y2dy)=∫0+∞∫0+∞e−(x2+y2)dxdy=∫02π∫0+∞e−ρ2ρdρdθ=∫02π21dθ=4π
3利用泰勒展开,傅里叶级数
∫ 0 1 l n ( 1 + x ) x d x = ∫ 0 1 x − 1 2 x 2 + 1 3 x 3 − 1 4 x 4 + 1 5 x 5 − 1 6 x 6 . . . x d x = ∫ 0 1 1 − 1 2 x + 1 3 x 2 − 1 4 x 3 + 1 5 x 4 − 1 6 x 5 . . . d x = x − 1 4 x 2 + 1 9 x 3 − 1 16 x 4 + 1 25 x 5 − 1 36 x 6 . . . ∣ 0 1 = 1 − 1 4 + 1 9 − 1 16 + 1 25 − 1 36 . . . . = π 2 12 \int_0^1 \frac{ln(1+x)}{x} dx \\=\int_0^1 \frac{x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\frac{1}{5}x^5-\frac{1}{6}x^6...}{x} dx \\=\int_0^1 1-\frac{1}{2}x+\frac{1}{3}x^2-\frac{1}{4}x^3+\frac{1}{5}x^4-\frac{1}{6}x^5... dx \\=x-\frac{1}{4}x^2+\frac{1}{9}x^3-\frac{1}{16}x^4+\frac{1}{25}x^5-\frac{1}{36}x^6...\bigg |_0^1 \\=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\frac{1}{36}... \\. \\=\frac{\pi^2}{12} ∫01xln(1+x)dx=∫01xx−21x2+31x3−41x4+51x5−61x6...dx=∫011−21x+31x2−41x3+51x4−61x5...dx=x−41x2+91x3−161x4+251x5−361x6...∣∣∣∣01=1−41+91−161+251−361....=12π2
4函数变形,交换积分顺序
∫ 0 1 l n ( x + 1 − x 2 ) x d x = ∫ 0 1 1 2 l n ( x + 1 − x 2 ) 2 x d x = 1 2 ∫ 0 1 l n ( 1 + 2 x 1 − x 2 ) x d x = 1 2 ∫ 0 1 l n ( 1 + 2 x y 1 − x 2 ) ∣ 0 1 x d x = 1 2 ∫ 0 1 ∫ 0 1 2 1 − x 2 1 + 2 x y 1 − x 2 d y d x . = 1 2 ∫ 0 1 ∫ 0 1 2 1 − x 2 ( 1 − x 2 ) ( 1 + 2 x y 1 − x 2 ) ( 1 − x 2 ) d x d y . = 1 2 ∫ 0 1 ∫ 0 π 2 2 1 − x 2 ( 1 − x 2 ) ( 1 + 2 x y 1 − x 2 ) d ( a r c s i n x ) d y . = 1 2 ∫ 0 1 ∫ 0 π 2 2 c o s 2 t ( 1 + 2 y s i n t c o s t ) d ( t ) d y . = 1 2 ∫ 0 1 ∫ 0 π 2 c o s 2 t + 1 ( 1 + y s i n 2 t ) d ( t ) d y = 1 2 ∫ 0 1 1 2 y l n ( 1 + y s i n 2 t ) ∣ 0 π 2 + ( ∫ 0 π 2 1 1 + y s i n 2 t d t ) d y = 1 2 ∫ 0 1 ∫ 0 π 2 1 1 + y ( 2 t a n t 1 + t a n 2 t ) d t d y = 1 2 ∫ 0 1 ∫ 0 π 2 1 + t a n 2 t 1 + t a n 2 t + 2 y t a n t d t d y = 1 2 ∫ 0 1 ∫ 0 + ∞ 1 1 + t a n 2 t + 2 y t a n t d ( t a n t ) d y = 1 2 ∫ 0 1 ∫ 0 + ∞ 1 m 2 + 2 y m + y 2 + 1 − y 2 d ( m ) d y = 1 2 ∫ 0 1 ∫ 0 + ∞ 1 1 − y 2 ( m + y 1 − y 2 ) 2 + 1 d ( m ) d y = 1 2 ∫ 0 1 1 1 − y 2 a r c t a n ( m + y 1 − y 2 ) ∣ 0 + ∞ d y = 1 2 ∫ 0 1 π 2 1 1 − y 2 − 1 1 − y 2 a r c t a n ( y 1 − y 2 ) d y = 1 2 [ π 2 a r c s i n ( y ) ∣ 0 1 − ∫ 0 1 1 1 − s i n 2 q a r c t a n ( s i n q 1 − s i n 2 q ) d ( s i n q ) ] = 1 2 [ π 2 4 − ∫ 0 π 2 1 c o s q a r c t a n ( t a n q ) c o s q d ( q ) ] = 1 2 [ π 2 4 − ∫ 0 π 2 q d ( q ) ] = π 2 16 \int_0^1 \frac{ln(x+\sqrt{1-x^2})}{x}dx \\=\int_0^1 \frac{\frac{1}{2}ln(x+\sqrt{1-x^2})^2}{x}dx \\=\frac{1}{2} \int_0^1 \frac{ln(1+2x\sqrt{1-x^2})}{x}dx \\=\frac{1}{2} \int_0^1 \frac{ln(1+2xy\sqrt{1-x^2})\bigg|_0^1}{x}dx \\=\frac{1}{2} \int_0^1 \int_0^1 \frac{2\sqrt{1-x^2}}{1+2xy\sqrt{1-x^2}} dydx \\. \\=\frac{1}{2} \int_0^1 \int_0^1 \frac{2\sqrt{1-x^2}( \sqrt{1-x^2} ) } {(1+2xy\sqrt{1-x^2})(\sqrt{1-x^2})} dxdy \\. \\=\frac{1}{2} \int_0^1 \int_0^\frac{\pi}{2} \frac{2\sqrt{1-x^2}( \sqrt{1-x^2} ) }{(1+2xy\sqrt{1-x^2})} d(arcsinx)dy \\. \\=\frac{1}{2} \int_0^1 \int_0^\frac{\pi}{2} \frac{2cos^2t}{(1+2ysintcost)} d(t)dy \\. \\=\frac{1}{2} \int_0^1 \int_0^\frac{\pi}{2} \frac{cos2t+1}{(1+ysin2t)} d(t)dy \\=\frac{1}{2} \int_0^1 \frac{1}{2y} ln(1+ysin2t) \bigg |_0^\frac{\pi}{2}+(\int_0^\frac{\pi}{2} \frac{1}{1+ysin2t} dt)dy \\=\frac{1}{2} \int_0^1 \int_0^\frac{\pi}{2} \frac{1}{1+y(\frac{2tant}{1+tan^2t})} dt dy \\=\frac{1}{2} \int_0^1 \int_0^\frac{\pi}{2} \frac{1+tan^2t}{1+tan^2t+2ytant} dt dy \\=\frac{1}{2} \int_0^1 \int_0^{+\infty} \frac{1}{1+tan^2t+2ytant} d(tant)dy \\=\frac{1}{2} \int_0^1 \int_0^{+\infty} \frac{1}{m^2+2ym+y^2+1-y^2} d(m)dy \\=\frac{1}{2} \int_0^1 \int_0^{+\infty} \frac{\frac{1}{1-y^2}}{(\frac{m+y}{\sqrt{1-y^2}})^2+1} d(m)dy \\=\frac{1}{2} \int_0^1 \frac{1}{\sqrt{1-y^2}}arctan(\frac{m+y}{\sqrt{1-y^2}}) \bigg |_0^{+\infty}dy \\=\frac{1}{2} \int_0^1 \frac{\pi}{2}\frac{1}{\sqrt{1-y^2}}-\frac{1}{\sqrt{1-y^2}}arctan(\frac{y}{\sqrt{1-y^2}}) dy \\=\frac{1}{2}[ \frac{\pi}{2}arcsin(y) \bigg|_0^1-\int_0^1 \frac{1}{\sqrt{1-sin^2q}}arctan(\frac{sinq}{\sqrt{1-sin^2q}}) d(sinq)] \\=\frac{1}{2}[ \frac{\pi^2}{4}-\int_0^\frac{\pi}{2} \frac{1}{cosq}arctan(tanq) cosqd(q)] \\=\frac{1}{2}[ \frac{\pi^2}{4}-\int_0^\frac{\pi}{2} qd(q)] \\=\frac{\pi^2}{16} ∫01xln(x+1−x2)dx=∫01x21ln(x+1−x2)2dx=21∫01xln(1+2x1−x2)dx=21∫01xln(1+2xy1−x2)∣∣∣∣01dx=21∫01∫011+2xy1−x221−x2dydx.=21∫01∫01(1+2xy1−x2)(1−x2)21−x2(1−x2)dxdy.=21∫01∫02π(1+2xy1−x2)21−x2(1−x2)d(arcsinx)dy.=21∫01∫02π(1+2ysintcost)2cos2td(t)dy.=21∫01∫02π(1+ysin2t)cos2t+1d(t)dy=21∫012y1ln(1+ysin2t)∣∣∣∣02π+(∫02π1+ysin2t1dt)dy=21∫01∫02π1+y(1+tan2t2tant)1dtdy=21∫01∫02π1+tan2t+2ytant1+tan2tdtdy=21∫01∫0+∞1+tan2t+2ytant1d(tant)dy=21∫01∫0+∞m2+2ym+y2+1−y21d(m)dy=21∫01∫0+∞(1−y2m+y)2+11−y21d(m)dy=21∫011−y21arctan(1−y2m+y)∣∣∣∣0+∞dy=21∫012π1−y21−1−y21arctan(1−y2y)dy=21[2πarcsin(y)∣∣∣∣01−∫011−sin2q1arctan(1−sin2qsinq)d(sinq)]=21[4π2−∫02πcosq1arctan(tanq)cosqd(q)]=21[4π2−∫02πqd(q)]=16π2
5利用函数自身性质
∫ 0 π x s i n x 1 + s i n 2 x d x = ∫ 0 π ( x − π 2 + π 2 ) s i n x 1 + s i n 2 x d x = ∫ 0 π π 2 s i n x 1 + s i n 2 x d x = ∫ 0 π π 2 s i n x 2 − c o s 2 x d x = π 2 ∫ 0 π ( s i n x 2 + c o s x + s i n x 2 − c o s x ) ÷ 2 2 d x = 2 π 4 [ l n ( 2 + 1 ) − l n ( 2 − 1 ) ] \int_0^\pi \frac{xsinx}{1+sin^2x}dx \\=\int_0^\pi \frac{(x-\frac{\pi}{2}+\frac{\pi}{2})sinx}{1+sin^2x}dx \\=\int_0^\pi \frac{ \frac{\pi}{2} sinx}{1+sin^2x} dx \\=\int_0^\pi \frac{ \frac{\pi}{2} sinx}{2-cos^2x} dx \\= \frac{\pi}{2} \int_0^\pi (\frac{sinx}{\sqrt2+cosx}+\frac{ sinx}{\sqrt2-cosx} )\div2\sqrt2dx \\=\frac{\sqrt2\pi}{4}[ln(\sqrt2+1)-ln(\sqrt2-1)] ∫0π1+sin2xxsinxdx=∫0π1+sin2x(x−2π+2π)sinxdx=∫0π1+sin2x2πsinxdx=∫0π2−cos2x2πsinxdx=2π∫0π(2+cosxsinx+2−cosxsinx)÷22dx=42π[ln(2+1)−ln(2−1)]