1. 基本概念及创建
1.1 Series 是带有标签的一维数组
可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引
核心:Series
相比于Ndarray
,是一个自带索引index
的数组 → 一维数组 + 对应索引
所以当只看Series
的值的时候,就是一个Ndarray
Series
和Ndarray
较相似,索引切片功能差别不大
Series
和Dict
相比,Series
更像一个有顺序的字典(Dict
本身不存在顺序),其索引原理与字典相似(一个用key
,一个用index
)
import numpy as np
import pandas as pd
s = pd.Series(np.random.rand(5))
print(s)
print(type(s))
print('————————————')
# 查看数据、数据类型
print(s.index,type(s.index))
print(s.values,type(s.values))
# .index查看series索引,类型为rangeindex
# .values查看series值,类型是ndarray
–> 输出的结果为:
0 0.030108
1 0.231974
2 0.446826
3 0.349113
4 0.796314
dtype: float64
<class 'pandas.core.series.Series'>
————————————
RangeIndex(start=0, stop=5, step=1) <class 'pandas.core.indexes.range.RangeIndex'>
[0.03010771 0.23197374 0.44682555 0.34911309 0.79631394] <class 'numpy.ndarray'>
1.2 Series 创建方法一:由字典创建
字典的key
就是index
,values
就是values
(可以是多类型数据)
dic = {'a':1 ,'b':2 , 'c':3, '4':4, '5':5}
s = pd.Series(dic)
print(s)
–> 输出的结果为:
a 1
b 2
c 3
4 4
5 5
dtype: int64
1.3 Series 创建方法二:由数组创建(一维数组)
默认index
是从0开始,步长为1的数字
arr = np.random.randn(5)
s = pd.Series(arr)
print(arr)
print(s)
print('————————————')
s = pd.Series(arr, index = ['a','b','c','d','e'],dtype = np.object)
print(s)
# index参数:设置index,长度保持一致
# dtype参数:设置数值类型
–> 输出的结果为:
[-0.4299341 0.07996115 1.74743019 -0.54153248 -0.20796761]
0 -0.429934
1 0.079961
2 1.747430
3 -0.541532
4 -0.207968
dtype: float64
————————————
a -0.429934
b 0.0799612
c 1.74743
d -0.541532
e -0.207968
dtype: object
1.4 Series 创建方法三:由标量创建
如果data(就是value
)是标量值,则必须提供索引。该值会重复,来匹配索引的长度
s = pd.Series(10, index = range(4))
print(s)
–> 输出的结果为:
0 10
1 10
2 10
3 10
dtype: int64
2. Series 名称属性:name
name为Series的一个参数,创建一个数组的名称
.name
方法:输出数组的名称,输出格式为str,如果没用定义输出名称,输出为None
s1 = pd.Series(np.random.randn(5))
print(s1)
print('————————————')
s2 = pd.Series(np.random.randn(5),name = 'test')
print(s2)
print(s1.name, s2.name,type(s2.name))
–> 输出的结果为:
0 -0.264324
1 0.264098
2 -1.282742
3 0.850851
4 1.165870
dtype: float64
————————
0 0.287461
1 1.207809
2 1.131239
3 -0.336880
4 1.925820
Name: test, dtype: float64
None test <class 'str'>
.rename()
重命名一个数组的名称,并且新指向一个数组,原数组不变
s3 = s2.rename('hehehe')
print(s3)
print('————————————')
print(s3.name, s2.name)
–> 输出的结果为:
0 0.287461
1 1.207809
2 1.131239
3 -0.336880
4 1.925820
Name: hehehe, dtype: float64
————————
hehehe test