【线性代数(13)】矩阵的特征值与特征向量含义及性质

注意:由于已经过了大学要考线性代数的年纪,关于矩阵的初等变化、齐次与非齐次方程的求解这种期末考试要计算的问题没有进行梳理

注意:由于已经过了大学要考线性代数的年纪,关于矩阵的初等变化、齐次与非齐次方程的求解这种期末考试要计算的问题没有进行梳理

注意:由于已经过了大学要考线性代数的年纪,关于矩阵的初等变化、齐次与非齐次方程的求解这种期末考试要计算的问题没有进行梳理

1 基本定义

假设 A A A是方阵(基调:就是特征值和特征方程只试用于方阵),对于一个数 λ \lambda λ,存在非零列向量 α \alpha α,使得 A α = λ α A\alpha = \lambda\alpha Aα=λα,则称 λ \lambda λ为方阵的特征值, α \alpha α称为对应于 λ \lambda λ的特征向量

  • λ \lambda λ可以为0,但是特征向量不能为0
  • 特征向量一定是列向量,而且是非零(参考最初矩阵相乘的七字口诀:中间相等,取两头
  • 在说特征向量的时候,要说对应于特征值的。也就是要先有特征值

根据定义进行推导: λ α − A α = 0 ⇒ ( λ E − A ) α = 0 \lambda\alpha-A\alpha =0 \Rightarrow (\lambda E - A)\alpha = 0 λαAα=0(λEA)α=0,重点来啦,这里的 α \alpha α是非零向量,如果将其换成 x x x,那么就是 ( λ E − A ) x = 0 (\lambda E - A)x= 0 (λEA)x=0,也就变成了求解齐次方程组了,前面的方阵就是方程的系数构成的矩阵,然后知道最终的解是非零的,故最终可以推出方阵的行列式为0

为了便于理解,这里举个我自己说服自己理解的栗子:

  • 首先是方阵,那么假设就是 3 ∗ 3 3*3 33,也就是三个方程三个未知数,方程的右边等于0
  • 那么方程一定有一个解,就是三个未知数都为0的时候,也就是不管方程的系数取多少,我的未知数都取0,最后计算等式左边和右边都是0
  • 现在出现了非零解,说明啥?
  • 第一反应就是肯定有两个或者三个方程组是等价的(也就是方程的系数成比例)
  • 比如 { x 1 + x 2 + x 3 = 0 5 x 1 + 5 x 2 + 5 x 3 = 0 − x 1 + x 2 + 6 x 3 = 0 \begin{cases} x_{1}+x_{2} + x_{3} =0 \\ 5x_{1}+5x_{2}+5x_{3}=0\\ -x_{1} +x_{2} +6x_{3} =0 \end{cases} x1+x2+x3=05x1+5x2+5x3=0x1+x2+6x3=0
  • 这样的情况下系数对应的行列式就为0了,存在两行数据成比例

上面就是自己的思维理解过程,不是很严谨,但是特别能说服我自己:齐次方程组存在非零解    ⟺    \iff 系数组成的行列式为0

所以最终对于上面的化简式子就有了: ( λ E − A ) x = 0 (\lambda E - A)x= 0 (λEA)x=0存在非零解    ⟺    ∣ λ E − A ∣ = 0 \iff |\lambda E - A| =0 λEA=0,其中

  • ( λ E − A ) (\lambda E - A) (λEA)被称为特征矩阵
  • ∣ λ E − A ∣ |\lambda E - A| λEA为特征多项式
  • ∣ λ E − A ∣ = 0 |\lambda E - A| =0 λEA=0为特征方程
  • x x x就是特征方程的解,也成为特征值或者特征根

2 性质

λ \lambda λ A A A的特征值, α \alpha α为对应于 λ \lambda λ的特征向量

  • 1) A α = λ α ⇒ c A α = c λ α ⇒ A ( c α ) = λ ( c α ) A\alpha = \lambda\alpha \Rightarrow cA\alpha = c\lambda\alpha \Rightarrow A(c\alpha) = \lambda (c \alpha) Aα=λαcAα=cλαA(cα)=λ(cα) c α c\alpha cα也是对应于 λ \lambda λ的特征向量,所以一个特征值可以对应多个特征向量,但是一个特征向量只能对应一个特征值,打个比方:特征值是父母,特征向量是儿女,正常情况下一对父母可以有多对儿女,但是对于单个的儿子,女儿来说只能有一对父母。
  • 2)若 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2 λ \lambda λ的特征向量,则 c 1 α 1 + c 2 α 2 c_{1}\alpha_{1}+c_{2}\alpha_{2} c1α1+c2α2也是 λ \lambda λ的特征向量,证明过程:根据公式拆开即可验证

3 计算

例1

A = ( − 1 1 0 − 4 3 0 1 0 2 ) A = \left(\begin{matrix} -1&1&0\\-4&3&0\\1&0&2\end{matrix}\right) A=141130002,求解A的特征值与特征向量

解:

λ E − A = ( λ 0 0 0 λ 0 0 0 λ ) − ( − 1 1 0 − 4 3 0 1 0 2 ) = ( λ + 1 − 1 0 4 λ − 3 0 1 0 λ − 2 ) \lambda E-A = \left(\begin{matrix} \lambda&0&0\\0&\lambda&0\\0&0&\lambda\end{matrix}\right)- \left(\begin{matrix} -1&1&0\\-4&3&0\\1&0&2\end{matrix}\right) = \left(\begin{matrix} \lambda+1&-1&0\\4& \lambda-3&0\\1&0& \lambda-2\end{matrix}\right) λEA=λ000λ000λ141130002=λ+1411λ3000λ2
提取行列式,问题就在于系数行列式的求解

∣ λ E − A ∣ = ∣ λ + 1 − 1 0 4 λ − 3 0 1 0 λ − 2 ∣ |\lambda E-A| = \begin{vmatrix} \lambda+1&-1&0\\4& \lambda-3&0\\1&0& \lambda-2\end{vmatrix} λEA=λ+1411λ3000λ2

求解思路:

  • 1)完全展开,得三次方程,很难解,比如 λ 3 + λ 2 + 1 = 9 \lambda^{3} + \lambda^{2} + 1 =9 λ3+λ2+1=9 。这种方法只能蒙,不建议使用
  • 2)把某行尽量转化为0,然后按照该行进行展开
  • 3)提公因子(最好含 λ \lambda λ
  • 4)相邻两项相同(行、列),行和或者列和相等

比如按照最后一列进行展开
∣ λ E − A ∣ = ( λ − 2 ) ( − 1 ) 3 + 3 ∣ λ + 1 1 − 4 λ − 3 ∣ = ( λ − 2 ) ( λ − 1 ) ( λ − 1 ) |\lambda E-A| = (\lambda-2)(-1)^{3+3} \begin{vmatrix} \lambda+1&1\\-4& \lambda-3\end{vmatrix}=(\lambda-2)(\lambda-1)(\lambda-1) λEA=(λ2)(1)3+3λ+141λ3=(λ2)(λ1)(λ1)

最终计算出来的 λ 1 = λ 2 = 1 , λ 3 = 2 \lambda_{1}=\lambda_{2}=1,\lambda_{3}=2 λ1=λ2=1,λ3=2(注意重根一定要写出来)

求解特征值对应的特征方程
① 当 λ 1 = λ 2 = 1 \lambda_{1}=\lambda_{2}=1 λ1=λ2=1
λ 1 E − A = ( 2 − 1 0 4 − 2 0 1 0 − 1 ) \lambda_{1} E-A = \left(\begin{matrix} 2&-1&0\\4& -2&0\\1&0&-1\end{matrix}\right) λ1EA=241120001
②当 λ 3 = 2 \lambda_{3}=2 λ3=2
λ 3 E − A = ( 3 − 1 0 4 − 1 0 1 0 0 ) \lambda_{3} E-A = \left(\begin{matrix} 3&-1&0\\4& -1&0\\1&0&0\end{matrix}\right) λ3EA=341110000

老师视频里抄错了,就溜了,哈哈哈,接下来进行一个详细的求解例题

注意: ∣ λ E − A ∣ |\lambda E-A| λEA λ \lambda λ只在对角线上存在;A中所有的元素都取相反数

例2

A = ( 1 − 2 2 − 2 − 2 4 2 4 − 2 ) A = \left(\begin{matrix} 1&-2&2\\-2&-2&4\\2&4&-2\end{matrix}\right) A=122224242,求解A的特征值与特征向量

解:

∣ λ E − A ∣ = ∣ λ − 1 2 − 2 2 λ + 2 − 4 − 2 − 4 λ + 2 ∣ = ∣ λ − 1 2 − 2 2 λ + 2 − 4 0 λ − 2 λ − 2 ∣ = ( λ − 2 ) ( λ − 2 ) ( λ + 7 ) |\lambda E-A| = \begin{vmatrix} \lambda-1&2&-2\\2& \lambda+2&-4\\-2&-4& \lambda+2\end{vmatrix} = \begin{vmatrix} \lambda-1&2&-2\\2& \lambda+2&-4\\0&\lambda-2& \lambda-2\end{vmatrix} = ( \lambda-2)( \lambda-2)( \lambda+7) λEA=λ1222λ+2424λ+2=λ1202λ+2λ224λ2=(λ2)(λ2)(λ+7)

最终计算出来的 λ 1 = λ 2 = 2 , λ 3 = − 7 \lambda_{1}=\lambda_{2}=2,\lambda_{3}=-7 λ1=λ2=2,λ3=7(注意重根一定要写出来)

规范化的求解步骤:
λ 3 = − 7 \lambda_{3}=-7 λ3=7时,对于 λ E − A \lambda E-A λEA矩阵,直接将上面计算行列式的第一步的结果拿来带入 λ 3 \lambda_{3} λ3的值,只做初等行变换,化为行简化阶梯型,解出同解方程组
λ 3 E − A = ( − 8 2 − 2 2 − 5 − 4 − 2 − 4 − 5 ) = ( 1 0 − 0.5 0 1 1 0 0 0 ) ⇒ { x 1 = − 0.5 x 3 x 2 = − x 3 \lambda_{3} E-A = \left(\begin{matrix} -8&2&-2\\2&-5&-4\\-2&-4&-5\end{matrix}\right) = \left(\begin{matrix} 1&0&-0.5\\0&1&1\\0&0&0\end{matrix}\right) \Rightarrow \begin{cases} x_{1}=-0.5 x_{3} \\ x_{2}=- x_{3} \end{cases} λ3EA=822254245=1000100.510{x1=0.5x3x2=x3

解出: x 1 = 1 , x 2 = 2 , x 3 = − 2 x_{1} = 1,x_{2}=2,x_{3}=-2 x1=1,x2=2,x3=2,所以对应的特征向量就为: c 1 ( 1 2 2 ) c_{1}\left(\begin{matrix} 1\\2\\2\end{matrix}\right) c1122,其中 c 1 ≠ 0 c_{1}\not =0 c1=0

λ 1 = λ 2 = 2 \lambda_{1}=\lambda_{2}=2 λ1=λ2=2
λ 1 E − A = ( 1 2 − 2 2 4 − 4 − 2 − 4 4 ) = ( 1 2 − 2 0 0 0 0 0 0 ) ⇒ x 1 = − 2 x 2 + 2 x 3 \lambda_{1} E-A = \left(\begin{matrix} 1&2&-2\\2&4&-4\\-2&-4&4\end{matrix}\right) = \left(\begin{matrix} 1&2&-2\\0&0&0\\0&0&0\end{matrix}\right) \Rightarrow x_{1}=-2 x_{2}+2x_{3} λ1EA=122244244=100200200x1=2x2+2x3

此时取 x 2 , x 3 x_{2},x_{3} x2,x3分别为 ( 1 0 ) \left(\begin{matrix} 1\\0\end{matrix}\right) (10) ( 0 1 ) \left(\begin{matrix} 0\\1\end{matrix}\right) (01),计算出特征向量为 c 2 ( − 2 1 0 ) + c 3 ( 2 0 1 ) c_{2}\left(\begin{matrix} -2\\1\\0\end{matrix}\right)+c_{3}\left(\begin{matrix} 2\\0\\1\end{matrix}\right) c2210+c3201,其中 c 2 , c 3 c_{2},c_{3} c2,c3不能同时为0

例3

A = ( 0 0 0 0 0 0 0 0 0 ) A = \left(\begin{matrix} 0&0&0\\0&0&0\\0&0&0\end{matrix}\right) A=000000000,求解A的特征值与特征向量

解:
∣ λ E − A ∣ = ∣ λ 0 0 0 λ 0 0 0 λ ∣ = λ 3 = 0 ⇒ λ = 0 |\lambda E-A| = \begin{vmatrix} \lambda&0&0\\0& \lambda&0\\0&0& \lambda\end{vmatrix} = \lambda^{3}=0 \Rightarrow \lambda = 0 λEA=λ000λ000λ=λ3=0λ=0

然后将 λ \lambda λ带入,求出对应的矩阵
λ E − A = ( 0 0 0 0 0 0 0 0 0 ) \lambda E-A = \left(\begin{matrix} 0&0&0\\0&0&0\\0&0&0\end{matrix}\right) λEA=000000000

那么问题就来了,化为行简化阶梯型,其中有1的放在在左边,其余的放在右边,所以这里的 x 1 , x 2 , x 3 x_{1},x_{2},x_{3} x1,x2,x3都是自由未知量,按照特征向量的定义,必须是要非零的列向量,所以最终的结果为 c 1 ( 1 0 0 ) + c 2 ( 0 1 0 ) + c 3 ( 0 0 1 ) c_{1}\left(\begin{matrix} 1\\0\\0\end{matrix}\right)+c_{2}\left(\begin{matrix} 0\\1\\0\end{matrix}\right)+c_{3}\left(\begin{matrix} 0\\0\\1\end{matrix}\right) c1100+c2010+c3001,其中 c 1 , c 2 , c 3 c_{1},c_{2},c_{3} c1,c2,c3不能同时为0

4 特征值与特征向量的性质

性质:

  • 1) A A A A T A^{T} AT有相同的特征值,但是特征向量不一定相同
    证明: ∣ λ E − A T ∣ = ∣ λ E T − A T ∣ = ∣ ( λ E − A ) T ∣ = ∣ λ E − A ∣ = 0 |\lambda E-A^{T}| = |\lambda E^{T}-A^{T}|=|(\lambda E - A)^{T}|=|\lambda E-A|=0 λEAT=λETAT=(λEA)T=λEA=0
  • 2)若 ∑ ∣ a i j < 1 , i = 1 , 2 , . . . , n ∣ \sum|a_{ij}<1,i=1,2,...,n| aij<1,i=1,2,...,n ∑ ∣ a i j ∣ < 1 , j = 1 , 2 , . . . , n \sum|a_{ij}|<1,j=1,2,...,n aij<1,j=1,2,...,n,则 ∣ λ k ∣ < 1 |\lambda_{k}| < 1 λk<1
  • 3)若方阵的n个特征值为 λ 1 , λ 2 , . . . , λ n \lambda_{1},\lambda_{2},...,\lambda_{n} λ1,λ2,...,λn,则有① ∑ i = 1 n λ i = ∑ i = 1 n a i i \sum_{i=1}^{n}\lambda_{i} =\sum_{i=1}^{n}a_{ii} i=1nλi=i=1naii,也就是所有的特征值之和就为矩阵对角线元素之和;② λ 1 , λ 2 , . . . , λ n = ∣ A ∣ \lambda_{1},\lambda_{2},...,\lambda_{n}=|A| λ1,λ2,...,λn=A
  • 4)互不相同的特征值 λ 1 , λ 2 , . . . , λ n \lambda_{1},\lambda_{2},...,\lambda_{n} λ1,λ2,...,λn对应的特征向量 α 1 , α 2 , . . . , α n \alpha_{1},\alpha_{2},...,\alpha_{n} α1,α2,...,αn线性无关
  • 5)对4)进行补充,如果每个特征向量有多对特征值,那么这些特征向量也是线性无关的
  • 6)k重特征根,对应的线性无关的特征向量的个数小于等于k

其它性质:

  • 1) k λ k\lambda kλ k A kA kA的特征值
  • 2) λ 2 \lambda^{2} λ2 A 2 A^{2} A2的特征值, λ k \lambda^{k} λk A k A^{k} Ak的特征值
    比如2是 A A A的特征值, A 5 + 6 A 2 + A + 3 E A^{5} + 6A^{2} +A + 3E A5+6A2+A+3E的特征值为 A 5 + 6 ∗ 2 2 + 2 + 3 A^{5} + 6*2^{2} +2 + 3 A5+622+2+3,注意对应的 A A A换成特征值,单位阵改成1即可
  • 3) 1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1的特征值; 1 λ ∣ A ∣ \frac{1}{\lambda}|A| λ1A A ∗ A* A的特征值
  • 11
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值