【nlp】2.7 seq2seq英译法实战项目解析

该博客介绍了seq2seq模型在英法翻译项目中的应用,详细解析了模型架构,包括GRU编码器和解码器的构建,并讨论了teacher_forcing在训练中的作用。内容涵盖了数据预处理、模型训练和评估,以及Attention机制的可视化分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 seq2seq介绍

1.1 seq2seq模型架构

在这里插入图片描述
seq2seq模型架构分析:

seq2seq模型架构包括三部分,分别是encoder(编码器)、decoder(解码器)、中间语义张量c。其中编码器和解码器的内部实现都使用了GRU模型
图中表示的是一个中文到英文的翻译:欢迎 来 北京 → welcome to BeiJing。编码器首先处理中文输入"欢迎 来 北京",通过GRU模型获得每个时间步的输出张量,最后将它们拼接成一个中间语义张量c;接着解码器将使用这个中间语义张量c以及每一个时间步的隐层张量, 逐个生成对应的翻译语言

我们的案例通过英译法来讲解seq2seq设计与实现。

2 数据集介绍

文件中包含了英语和法语的语料,具体格式如下

i am from brazil .  je viens du bresil 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值