【记录一下】RagFlow 本地安装详细步骤(Windows + Linux)

RagFlow 本地安装详细步骤(Windows + Linux)

一、系统要求
  • 硬件:CPU ≥ 4核,内存 ≥ 16GB,磁盘 ≥ 50GB(推荐SSD)
  • 软件
    • Windows:WSL2 + Docker Desktop(需启用WSL集成)
    • Linux:Docker ≥ 24.0.0,Docker Compose ≥ v2.26.1
  • 其他:需科学上网或配置国内镜像源加速下载
二、Windows 安装步骤
1. 安装 WSL2 与 Docker Desktop
  1. 启用 WSL2

    • 以管理员身份打开PowerShell,执行:
      wsl --install
      
    • 重启系统后,从Microsoft Store安装 Ubuntu 20.04+ 发行版。
  2. 安装 Docker Desktop

    • 访问Docker官网下载安装包。
    • 安装时勾选 “Use WSL 2 based engine”,并在设置中启用 WSL集成(选择已安装的Ubuntu)。
2. 部署 Ollama 服务(AI后端)
  1. 访问Ollama官网下载Windows版安装包。
  2. 解压后启动服务:
    ollama serve
    
3. 克隆 RagFlow 仓库
  1. 打开Ubuntu终端,执行:
    git clone https://github.com/infiniflow/ragflow.git
    cd ragflow
    
4. 配置环境
  1. 修改 .env 文件(按需调整端口和存储路径):
    cp .env.example .env
    # 示例修改
    API_PORT=9380
    WEB_PORT=3000
    VOLUME_DIR=/mnt/d/ragflow_data  # 推荐使用WSL内路径
    
5. 启动服务
  1. 使用Docker Compose启动:
    docker-compose up -d
    
    • 首次启动需下载约10GB镜像,耐心等待。
6. 验证安装
  1. 检查容器状态:
    docker ps
    
    • 应看到 ragflow-serverelasticsearchredis 3个容器运行中。
  2. 浏览器访问:
    http://localhost:3000
    
三、Linux 安装步骤(Ubuntu 20.04+ 示例)
1. 环境准备
  1. 更新系统并安装依赖:

    sudo apt update && sudo apt upgrade -y
    sudo apt install docker.io docker-compose python3-pip git -y
    
  2. 调整系统参数(防止内存映射不足):

    sudo sysctl -w vm.max_map_count=262144
    # 永久生效(需重启)
    echo "vm.max_map_count=262144" | sudo tee -a /etc/sysctl.conf
    
2. 安装 Ollama(AI后端)
  1. 下载并解压:
    curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
    tar xzvf ollama-linux-amd64.tgz
    sudo mv ollama /usr/local/bin/
    
  2. 启动服务:
    ollama serve &
    
3. 克隆 RagFlow 仓库
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/docker
4. 配置镜像加速(可选)
  1. 修改 docker/.env 文件,设置国内镜像源:
    # 示例:使用阿里云镜像
    RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.16.0
    
5. 启动服务
docker compose -f docker-compose-CN.yml up -d
6. 验证安装
  1. 检查日志:
    docker logs -f ragflow-server
    
    • 看到 Running on http://0.0.0.0:9380 表示启动成功。
  2. 浏览器访问:
    http://localhost:9380
    
四、通用配置与问题解决
1. 端口冲突
  • 修改 .env 文件中的 HTTP_PORTAPI_PORT 值,重启服务:
    docker-compose down && docker-compose up -d
    
2. 镜像下载慢
  • Windows/Linux:在 docker/.env 中配置国内镜像源:
    # 示例:Docker Hub镜像加速
    DOCKER_REGISTRY=registry.cn-hangzhou.aliyuncs.com
    
3. 权限问题
  • 将当前用户加入 docker 组:
    sudo usermod -aG docker $USER
    newgrp docker  # 立即生效
    
4. 数据持久化
  • 默认数据存储在 ./docker/volumes,可通过 VOLUME_DIR 修改路径。
五、安装后操作
  1. 注册与登录
    • 浏览器访问控制台,使用邮箱注册账号。
  2. 配置模型
    • 进入 Model Providers 页面,添加本地或在线模型(如Ollama、OpenAI)。
  3. 创建知识库
    • 上传文档(支持PDF/DOCX/TXT等),选择分块模板和嵌入模型(推荐 BAAI/bge-large-zh-v1.5)。
  4. 测试问答
    • Chat 模块输入问题,验证知识库检索效果。

附:常见错误解决

  • 镜像拉取失败:检查网络或手动下载镜像后导入。
  • 容器退出:查看日志定位错误(docker logs <容器名>)。
  • 性能不足:增加内存分配(Docker设置中调整资源限制)。
### 在 Windows Server 2016 上本地部署 RAGFlow #### 获取源码 为了在 Windows Server 2016 上部署 RAGFlow,需先获取项目源代码。通过 Git 命令克隆仓库到本地环境: ```bash git clone https://github.com/infiniflow/ragflow.git ``` 此命令会下载整个 RagFlow 项目的最新版本至当前目录下[^1]。 #### 启动应用程序 完成源码拉取之后,进入 `api` 文件夹内分别执行两个 Python 脚本文件来启动核心服务组件: - task_executor.py - ragflow_server.py 另外,在前端部分还需要运行 npm 开发模式指令以启动 Web 应用程序界面: ```bash cd path\to\project\frontend npm install npm run dev ``` 上述操作能够使 API 和前端应用正常工作并监听指定端口等待客户端请求到来[^2]. #### 使用 Docker 容器化部署 (推荐方式) 对于生产环境中更稳定可靠的方案,则建议采用官方提供的Docker镜像来进行安装配置。确保所有必要的容器都在健康运转之中, 包括但不限于以下几个关键的服务实例: - **ragflow-server**: 主要负责处理业务逻辑以及对外提供 RESTful 接口访问. - **ragflow-redis**: 缓存层用于提高数据读写效率减少数据库压力. - **ragflow-mysql**: 关系型数据库管理系统存储结构化的持久化信息. - **ragflow-minio**: 对象存储解决方案实现非结构化资源管理功能. - **ragflow-es-01**: Elasticsearch 实例支持全文检索能力. 可以利用如下命令查看各服务的日志输出情况以便于调试排查可能存在的问题: ```bash docker logs container_name_or_id ``` 例如针对主节点可输入 `docker logs ragflow-server` 来获得其最近一段时间内的活动记录[^3]. 考虑到不同操作系统之间可能存在细微差别,尽管本文档侧重描述 Linux 平台上的实践步骤,但在大多数情况下这些指导原则同样适用于 Windows Server 2016 的场景当中[^4].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值