最短路径算法-Floyd zz

 

  如果有一个矩阵D=[d(ij)],其中d(ij)>0表示i城市到j城市的距离。若i与j之间无路可通,那么d(ij)就是无穷大。又有d(ii)=0。编写一个程序,通过这个距离矩阵D,把任意两个城市之间的最短与其行径的路径找出来。
     我们可以将问题分解,先找出最短的距离,然后在考虑如何找出对应的行进路线。如何找出最短路径呢,这里还是用到动态规划的知识,对于任何一个城市而言,i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,…,n(n是城市的数目),在检查d(ij)与d(ik)+d(kj)的值;在此d(ik)与d(kj)分别是目前为止所知道的i到k与k到j的最短距离,因此d(ik)+d(kj)就是i到j经过k的最短距离。所以,若有d(ij)>d(ik)+d(kj),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(ij)重写为d(ik)+d(kj),每当一个k查完了,d(ij)就是目前的i到j的最短距离。重复这一过程,最后当查完所有的k时,d(ij)里面存放的就是i到j之间的最短距离了。所以我们就可以用三个for循环把问题搞定了,但是有一个问题需要注意,那就是for循环的嵌套的顺序:我们可能随手就会写出这样的程序,但是仔细考虑的话,会发现是有问题的。

                     for(int i=0; i<n; i++)
                           for(int j=0; j<n; j++)
                                for(int k=0; k<n; k++)  
    

     问题出在我们太早的把i-k-j的距离确定下来了,假设一旦找到了i-p-j最短的距离后,i到j就相当处理完了,以后不会在改变了,一旦以后有使i到j的更短的距离时也不能再去更新了,所以结果一定是不对的。所以应当象下面一样来写程序:

                    for(int k=0; k<n; k++)
                         for(int i=0; i<n; i++)
                              for(int j=0; j<n; j++)

    这样作的意义在于固定了k,把所有i到j而经过k的距离找出来,然后象开头所提到的那样进行比较和重写,因为k是在最外层的,所以会把所有的i到j都处理完后,才会移动到下一个k,这样就不会有问题了,看来多层循环的时候,我们一定要当心,否则很容易就弄错了。
     接下来就要看一看如何找出最短路径所行经的城市了,这里要用到另一个矩阵P,它的定义是这样的:p(ij)的值如果为p,就表示i到j的最短行经为i->…->p->j,也就是说p是i到j的最短行径中的j之前的最后一个城市。P矩阵的初值为p(ij)=i。有了这个矩阵之后,要找最短路径就轻而易举了。对于i到j而言找出p(ij),令为p,就知道了路径i->…->p->j;再去找p(ip),如果值为q,i到p的最短路径为i->…->q->p;再去找p(iq),如果值为r,i到q的最短路径为i->…->r->q;所以一再反复,到了某个p(it)的值为i时,就表示i到t的最短路径为i->t,就会的到答案了,i到j的最短行径为i->t->…->q->p->j。因为上述的算法是从终点到起点的顺序找出来的,所以输出的时候要把它倒过来。
     但是,如何动态的回填P矩阵的值呢?回想一下,当d(ij)>d(ik)+d(kj)时,就要让i到j的最短路径改为走i->…->k->…->j这一条路,但是d(kj)的值是已知的,换句话说,就是k->…->j这条路是已知的,所以k->…->j这条路上j的上一个城市(即p(kj))也是已知的,当然,因为要改走i->…->k->…->j这一条路,j的上一个城市正好是p(kj)。所以一旦发现d(ij)>d(ik)+d(kj),就把p(kj)存入p(ij)。
   下面是具体的C代码:
   #include            
   #include            
   #include            
   #define   MAXSIZE   20        

   void  floyd(int [][MAXSIZE], int [][MAXSIZE], int);
   void  display_path(int [][MAXSIZE], int [][MAXSIZE], int);
   void  reverse(int [], int);
   void  readin(int [][MAXSIZE], int *);

   #define   MAXSUM(a, b)   (((a) != INT_MAX && (b) != INT_MAX) ? /
                          ((a) + (b)) : INT_MAX)

   void floyd(int dist[][MAXSIZE], int path[][MAXSIZE], int n)
   {
       int  i, j, k;
       for (i = 0; i < n; i++)  
           for (j = 0; j < n; j++)
               path[i][j] = i;
       for (k = 0; k < n; k++)  
           for (i = 0; i < n; i++)
               for (j = 0; j < n; j++)  
                    if (dist[i][j] > MAXSUM(dist[i][k], dist[k][j]))
                    {
                         path[i][j] = path[k][j];
                         dist[i][j] = MAXSUM(dist[i][k], dist[k][j]);
                    }
   }

   void display_path(int dist[][MAXSIZE], int path[][MAXSIZE], int n)
   {
       int  *chain;
       int  count;
       int  i, j, k;
       printf(“/n/nOrigin->Dest   Dist   Path”);
       printf(  ”/n—————————–”);
       chain = (int *) malloc(sizeof(int)*n);
       for (i = 0; i < n; i++)
           for (j = 0; j < n; j++)
           {
               if (i != j)
               {  
                    printf(“/n%6d->%d    ”, i+1, j+1);
                    if (dist[i][j] == INT_MAX)
                         printf(“  NA    ”);
                    else
                    {
                         printf(“%4d    ”, dist[i][j]);
                         count = 0;  
                         k = j;
                         do
                         {
                             k = chain[count++] = path[i][k];
                         } while (i != k);
                         reverse(chain, count);
                         printf(“%d”, chain[0]+1);
                         for (k = 1; k < count; k++)
                              printf(“->%d”, chain[k]+1);
                         printf(“->%d”, j+1);
                    }
               }
           }
       free(chain);            
   }

   #define SWAP(a, b)  { temp = a; a = b; b = temp; }

   void reverse(int x[], int n)
   {
       int  i, j, temp;
       for (i = 0, j = n-1; i < j; i++, j–)
            SWAP(x[i], x[j]);
   }

   void readin(int dist[][MAXSIZE], int *number)
   {
       int  origin, dest, length, n;
       int  i, j;
       char line[100];
       gets(line);              
       sscanf(line, “%d”, &n);
       *number = n;
       for (i = 0; i < n; i++)
       {
           for (j = 0; j < n; j++)
                dist[i][j] = INT_MAX;
           dist[i][i] = 0;    
       }
       gets(line);              
       sscanf(line, “%d%d%d”, &origin, &dest, &length);
       while (origin != 0 && dest != 0 && length != 0)
       {
          dist[origin-1][dest-1] = length;
          gets(line);        
          sscanf(line, “%d%d%d”, &origin, &dest, &length);
       }
   }
     测试程序如下所示:
   int main(void)
   {
       int dist[MAXSIZE][MAXSIZE];
       int path[MAXSIZE][MAXSIZE];
       int n;
       printf(“/nInput the path information:”);
       printf(“/n—————————-/n”);
       readin(dist, &n);
       floyd(dist, path, n);
       display_path(dist, path, n);
       getchar();
   }
     其中readin函数规定了输入的格式,第一列是指出有多少个城市;第二列以后每行三个数;第一个和第二个是一条路径的起点和终点,第三个数是路径的长度,最后以三个0作为输入结束条件。下面是一个输入的例子:
              Input the path information:
            ————————————–
              4
              1          2          5
              2          1          50
              2          3          15
              2          4          5
              3          1          30
              3          4          15
              4          1          15
              4          3          5
              0          0          0
   对应的输出结果为:
     Origin->Dest      Dist          Path
  ———————————————-
        1->2             5           1->2
        1->3            15          1->2->4->3
        1->4            10          1->2->4
        2->1            20          2->4->1
        2->3            10          2->4->3
        2->4             5           2->4
        3->1            30          3->1
        3->2            35          3->1->2
        3->4            15          3->4
        4->1            15          4->1
        4->2            20          4->1->2
        4->3             5           4->3

 

 

floyd算法用以解决所有点对最短路径。

floyd算法基本思想是递推,动态规划。我们记 dp[i][j][k] 表示图中顶点 i 到 j 的最短路径,且该最短路径中,所经过的中间顶点(不包括 i, j) 的范围为 [1,k],由此我们可以得到以下递推式:

dp[i][j][k]= w[i][j]   如果 k== 0

dp[i][j][k]= min{ dp[i][k][k-1]+ dp[k][j][k-1] }  如果 k>= 1。

实际中,空间上我们可以减少一维。

 

floyd算法同样可以来解决一些其它问题

1) 有向图的最小(或最大)环

这个问题答案其实就是自身到自身的最短路径,运行完 floyd 后,对每个顶点取自身到自身距离的最小者。

 

2) 无向图的最小环

根据以上的递推式,dp[i][j][k] 表示 i 到 j 的最短路径,且该最短路径中,所经过的中间顶点(不包括 i, j) 的范围为 [1,k]。

此时我们可以枚举出顶点序列最大为 k+ 1 的所有最小环,如何枚举:设与顶点序列最大的顶点 k+ 1 相连的两个顶点为 x, y,x,y 须满足 x, y<= k。这样最小环构成为 边<x,k+1>  边<k+ 1, y> 及 x 到 y 的最短路径。

Poj 1734 Sightseeing trip

#include <stdio.h>
#include <stdlib.h>

int const N= 110, inf= 5000000;
int mat[N][N], dist[N][N], pre[N][N], path[N], n, m, top= 0, p;

#define min(a,b) ((a)<(b)?(a):(b))

int main(){
    scanf("%d%d",&n,&m );
    for( int i= 0; i<= n; ++i )
    for( int j= 0; j<= n; ++j ){
        mat[i][j]= inf; dist[i][j]= inf; pre[i][j]= j; }
    while( m-- ){
        int u, v, d;
        scanf("%d%d%d",&u,&v,&d);
        mat[u][v]= min( mat[u][v], d );
        mat[v][u]= mat[u][v];
        dist[u][v]= mat[u][v]; dist[v][u]= mat[v][u];
    }
    int ans= inf;
    for( int k= 1; k<= n; ++k ){
        for( int x= 1; x< k; ++x )
        for( int y= 1; y< x; ++y ){
            if( mat[x][k]+ mat[k][y]+ dist[x][y]< ans ){
                ans= mat[x][k]+ mat[k][y]+ dist[x][y];
                top= 0; path[top++]= k; p= x;
                while( y ){
                    path[top++]= p; p= pre[p][y];
                }
                path[top++]= y;
            }
        }
        for( int i= 1; i<= n; ++i )
        for( int j= 1; j<= n; ++j )
        if( dist[i][k]+ dist[k][j]< dist[i][j] ){
            dist[i][j]= dist[i][k]+ dist[k][j];
            pre[i][j]= pre[i][k]; }
    }
    if( top> 0 ){
        printf("%d", path[0] );
        for( int i= 1; i< top; ++i ) printf(" %d", path[i] );
        puts("");
    }else puts("No solution.");
    
    return 0;
}

 

3) 带限制的多点对最短路径

TOJ 3214 Find the Path
题意为给一个城市图,每个城市 i 有 ci 个警察,现有两个城市 u 和 v,找一条最短路径使得最短路径上任意一个城市的警察数量不大于 k。解法依然用到了 floyd 算法的思想,回到 dp[i][j][k] 表示图中顶点 i 到 j 的最短路径,且该最短路径中,所经过的中间顶点(不包括 i, j) 的范围为 [1,k] 这个定义,在这个问题中,我们加入中间顶点时按照警察数量从小到大的顺序加入。所以 dp[i][j][k] 所得到的最短路径中,每一个中间顶点的警察数量不会超过顶点 k 的警察数量。
代码

#include <iostream>
#include <algorithm>
#include <cstdio>

using namespace std;
int const N= 205, inf= 2000000;
struct Node{
    int cops, id;
}c[N];
int mat[N][N][N], n, m;

bool operator<(Node a, Node b ){
    return a.cops< b.cops; }
    
int main(){
    int test;
    scanf("%d", &test );
    while( test-- ){
        scanf("%d%d",&n,&m );
        for( int i= 1; i<= n; ++i ){
            scanf("%d", &c[i].cops);
            c[i].id= i; }
        
        sort( c+ 1, c+ 1+ n );
        
        for( int i= 0; i<= n; ++i )
        for( int j= 0; j<= n; ++j )
        mat[i][j][0]= inf;
        
        while( m-- ){
            int u, v, d;
            scanf("%d%d%d",&u,&v,&d );
            u++,v++;
            mat[u][v][0]= d; mat[v][u][0]= d;
        }
        
        for( int k= 1; k<= n; ++k ){
            for( int i= 1; i<= n; ++i )
            for( int j= 1; j<= n; ++j )
            mat[i][j][k]= mat[i][j][k-1];
            
            for( int i= 1; i<= n; ++i )
            for( int j= 1; j<= n; ++j ){
                int p= c[k].id;
                if( mat[i][p][k-1]+ mat[p][j][k-1]< mat[i][j][k] )
                mat[i][j][k]= mat[i][p][k-1]+ mat[p][j][k-1];
            }
        }
        int q;
        scanf("%d",&q );
        while( q-- ){
            int u, v, k;
            scanf("%d%d%d",&u,&v,&k );
            u++, v++;
            
            int i= 1;
            while( i<= n && c[i].cops<= k ) i++; i--;
            
            if( mat[u][v][i]!= inf ) printf("%d/n", mat[u][v][i] );
            else puts("-1");
        }
        puts("");
    }
    return 0;
}

 

4) floyd 与有向图的连通性

有向图的传递闭包可以用 floyd 算法求出。
ZOJ 3232  It's not Floyd Algorithm
题意为给出一个已经做过传递闭包的矩阵,求出原图最少由多少边组成。
先考虑原图与做过传递闭包后的新图的关系:对于原图中的强连通分量,做过传递闭包后,强连通分量就变成了团,任意两点都有边,所以新图中求得强连通分量一定是一个团,对于团,一定可以找到一个环把所有顶点连起来。可以证明,对于新图中的有 n(n>1) 个顶点的强连通分量,原图中至少需要 n 条边才能构成,只要取一个环就行了。把所有强连通分量处理后,这时的新图就了一个有向无环,这时我们可以做反闭包,求出剩余图所需的边数。
代码:

#include <stdio.h>
#include <stdlib.h>

int const N= 210;
int n, mat[N][N], map[N][N];
int dep[N], low[N], mark[N], stack[N], cnt, top, c, num[N];

void dfs( int u ){
    dep[u]= ++cnt; low[u]= dep[u]; stack[++top]= u;
    for( int v= 1; v<= n; ++v )
    if( mat[u][v] ){
        if( dep[v]== 0 ) {
            dfs( v );
            if( low[v]< low[u] ) low[u]= low[v];
        }
        else if( low[v]!= n && dep[v]< low[u] ) low[u]= dep[v];
    }
    if( dep[u]== low[u] ){
        c++;
        do{
            int v= stack[top];
            mark[v]= c; low[v]= n;
        }while( stack[top--]!= u );
    }
}

int main(){
    while( scanf("%d",&n)!= EOF ){
        for( int i= 0; i<= n; ++i )
        for( int j= 0; j<= n; ++j ) {
            mat[i][j]= 0; map[i][j]= 0; }
        
        for( int i= 1; i<= n; ++i )
        for( int j= 1; j<= n; ++j )
        scanf("%d", &mat[i][j] );

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值