给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
这题我的方法很土,就是建一棵树。然后前序和中序遍历树,得到合起来的字符串(N<=10).也可以中序和后序。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedef struct Node *node;
struct Node{
int x;
node left;
node right;
};
node build(node T,int x){
if(T==NULL){
T=(node)malloc(sizeof(struct Node));
T->x=x;
T->left=T->right=NULL;
}
else if(x>T->x){
T->right=build(T->right,x);
}
else if(x<T->x){
T->left=build(T->left,x);
}
return T;
}
char prein[25];
char cmp[25];
int len=0;
void pre(node T){
if(T){
prein[len++]=T->x;
pre(T->left);
pre(T->right);
}
}
void in(node T){
if(T){
in(T->left);
prein[len++]=T->x;
in(T->right);
}
}
int main(){
int n,m,i;
int temp;
while(scanf("%d",&n)){
if(n==0){
break;
}
scanf("%d",&m);
node T1=NULL;
for(i=0;i<n;i++){
scanf("%d",&temp);
T1=build(T1,temp);
}
len=0;
pre(T1);
in(T1);
strcpy(cmp,prein);
while(m--){
node T2=NULL;
for(i=0;i<n;i++){
scanf("%d",&temp);
T2=build(T2,temp);
}
len=0;
pre(T2);
in(T2);
if(strcmp(cmp,prein)==0){
printf("Yes\n");
}
else{
printf("No\n");
}
}
}
}