463. Island Perimeter

本文介绍了一种计算二维网格中岛屿周长的方法。网格由1(陆地)和0(水域)组成,岛屿由相连的陆地单元构成。通过检查每个陆地单元的四周,确定边界与水或网格边缘接触的部分,从而计算出岛屿的总周长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represents water.

Grid cells are connected horizontally/vertically (not diagonally). The grid is completely surrounded by water, and there is exactly one island (i.e., one or more connected land cells).

The island doesn't have "lakes" (water inside that isn't connected to the water around the island). One cell is a square with side length 1. The grid is rectangular, width and height don't exceed 100. Determine the perimeter of the island.

 

Example:

Input:
[[0,1,0,0],
 [1,1,1,0],
 [0,1,0,0],
 [1,1,0,0]]

Output: 16

Explanation: The perimeter is the 16 yellow stripes in the image below:

对于矩阵中为1的元素,只要计算其上下左右元素为0或不存在的位置数量即可

class Solution {
public:
    
    int out(int n,int m,int i,int j){
        if(i<0||i==n||j<0||j==m){ //位置不存在
            return 1;
        }
        return 0;
    }
    
    int islandPerimeter(vector<vector<int>>& grid) {
        int n=grid.size(),i,j,ans=0;
        if(!n){
            return 0;
        }
        int m=grid[0].size();
        for(i=0;i<n;i++){
            for(j=0;j<m;j++){
                if(grid[i][j]==0)continue;
                if(out(n,m,i-1,j)||grid[i-1][j]==0){//上
                    ans++;
                }
                if(out(n,m,i+1,j)||grid[i+1][j]==0){//下
                    ans++;
                }
                if(out(n,m,i,j-1)||grid[i][j-1]==0){//左
                    ans++;
                }
                if(out(n,m,i,j+1)||grid[i][j+1]==0){//右
                    ans++;
                }
            }
        }
        return ans;
    }
};

别人的思路:

只需要计算为1的方格数量和重复的边数即可. 为防止重复计算重合边, 每次只往回查看, 也就是如果一个方格为1, 只查看左边和上边的方格是否为1.

class Solution {
public:
    int islandPerimeter(vector<vector<int>>& grid) {
        if(grid.size()==0) return 0;
        int cnt = 0, repeat = 0;
        for(int i = 0; i < grid.size(); i++)
        {
            for(int j = 0; j < grid[0].size(); j++)
            {
                if(!grid[i][j]) continue;
                cnt++;
                if(i!=0 && grid[i-1][j]) repeat++;
                if(j!=0 && grid[i][j-1]) repeat++;
            }
        }
        return cnt*4 - repeat*2;
    }
};

 

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值