常规递归和尾递归的性能比较

package net.liuyx.algorithm;

public class Fibonacci {
    private static int[][] a = { { 1, 1 }, { 1, 0 } };

    /**
     * @param args
     */
    public static void main(String[] args) {
        for (Tester test : tests)
            test.test(80);
    }

    private static Tester[] tests = {/* new Tester("常规递归") {

        @Override
        long fib(int n) {
            if (n < 2)
                return n;
            return fib(n - 1) + fib(n - 2);
        }
    }, */new Tester("尾递归") {

        @Override
        long fib(int n) {
            return fib2(n, 1, 1);
        }

        private long fib2(int n, int acc1, int acc2) {
            if (n < 2)
                return acc1;
            return fib2(n - 1, acc2, acc1 + acc2);
        }
    }, new Tester("尾递归转换成循环性") {

        @Override
        long fib(int n) {
            int acc1 = 0, acc2 = 1;
            while (true) {
                if (n == 0) {
                    return acc1;
                }
                if (n == 1)
                    return acc2;
                int tmp = acc1;
                acc1 = acc2;
                acc2 = acc2 + tmp;
                n--;
            }
        }
    }, new Tester("经过算法优化的 ") {

        @Override
        long fib(int n) {
            int[][] arr = fibonacciAlogrithm(n);
            long result = arr[1][1];
            return result;
        }

        private int[][] fibonacciAlogrithm(int n) {
            int[][] result = { { 1, 1 }, { 1, 0 } };
            while (n != 0) {
                if ((n & 1) != 0) {
                    result = multiply(result, a);
                }
                a = multiply(a, a);
                n = n >> 1;
            }
            return result;
        }

        private int[][] multiply(int[][] a, int[][] b) {
            int[][] result = new int[2][2];
            result[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0];
            result[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1];
            result[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0];
            result[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1];
            return result;
        }
    } };

    private static abstract class Tester {
        private String name;

        public Tester(String name) {
            this.name = name;
        }

        public void test(int n) {
            System.out.print(name + ": ");
            long start = System.nanoTime();
            fib(n);
            long duration = System.nanoTime() - start;
            System.out.println("历时: " + duration);
        }

        abstract long fib(int n);
    }
}

结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值