太上头了,一口气读完的AI神书!!-《大型语言模型实战指南:应用实践与场景落地》

看了很多书还是不能理解大模型的核心技术?
还是不会开发大模型的常见应用?

这本书解决大模型进阶和落地路上的各种难题!
在这里插入图片描述

  • 如何在某些场景中合理运用大模型?
  • 如何优化通用大模型在领域上的效果?
  • 如何确保生成内容的稳定性和安全性?
  • 如何确保大模型可在生产环境下稳定使用?
  • 大模型实战落地过程中的各种问题都能在本书中找到答案!

一、为什么本书值得读?

01 作者资深,内容质量有保障
作者是NLP和AI领域的资深专家,大型领域的先驱者,实战经验丰富。

02 理论扎实,让你透彻理解大模型核心技术
深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法等,并提供大量代码及注解

03 注重实战,手把手教你开发大模型应用
手把手教你如何构建简单但强大的应用程序,如角色扮演信息抽取、知识问答、AlAgent等

04行业落地,让你将大模型真正落地
深入探讨了领域特定大模型的应用,如法律、医疗、金融和教育等领域。

05 大模型厂商推荐,高度评价
零一万物、面壁智能、通义千问、百姓A1、澜舟科技等5个通用大模型厂商的技术负责人高度评价并推荐

这本《大型语言模型实战指南 应用实践与场景落地》PDF已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:大型语言模型实战指南 应用实践与场景落地》免费分享(安全链接,放心点击)]👈

二、书籍简介

这是一本系统梳理并深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法的著作,也是一本能手把手教你构建角色扮演、信息抽取、知识问答:AAQen!等各种强大的应用释序的著作,本书得到了零一万物、面壁智能、通义千问、百姓A、澜舟科技等国内主流大模型团队的负青人的高度评价和鼎力推荐。具体地,。

三、通过本书你能了解或掌握以下知识:

(1)大型语言模型的基础理论,包括常见的模型架构、领域大型语言模型以及如何评估大模型的性能。

(2)大模型微调的关键步骤:从数据的收集、清洗到流选,直至微调训练的技术细节。

(3)大模型人类偏好对齐方法,从基于人工反馈的强化学习框架到当前主流的对齐方法。

(4)通过GPTS快速搭建个性化的专属ChatGPT应用。

(5)通过开源模型在多种场最下搭建大模型应用,包括:表格査询、角色扮演、信息抽取、知识问答、AlAgent等。

(6)掌握大模型Agent方法以及Aaent常用框架。

(7)基干LangChain框架构建一个AUtOGPT应用,本书集大模型理论、实性场景落地干一体,提供大量经详细注释的代码,方便读者理解和实提,总之不管里是想深入研究大模型本身,还是进行大模型相关应用搭建,本书都应该能给你颇具价值的技术启发与思考,让你在大模型的路上快速前行,少走弯路.。

在这里插入图片描述
在这里插入图片描述

四、目录

前言
第1章 大型语言模型基础 1
1.1 Transformer基础 1
1.2 常用的大型语言模型 4
1.2.1 GPT系列模型 4
1.2.2 OPT模型 11
1.2.3 Bloom模型 12
1.2.4 GLM系列模型 12
1.2.5 LLaMA系列模型 14
1.2.6 Baichuan系列模型 16
1.2.7 Qwen系列模型 18
1.2.8 Skywork模型 19
1.3 领域大型语言模型 21
1.3.1 法律大型语言模型 21
1.3.2 医疗大型语言模型 24
1.3.3 金融大型语言模型 27
1.3.4 教育大型语言模型 29
1.4 大型语言模型评估 30
1.4.1 大型语言模型的评估内容 30
1.4.2 大型语言模型的评估方法 32
1.4.3 大型语言模型评估榜单 33
1.5 本章小结 37
第2章 大型语言模型的常用微调方法 38
2.1 数据构造与清洗 38
2.1.1 数据构造方法 39
2.1.2 数据清洗方法 43
2.2 分词器构造 44
2.2.1 分词器概述 44
2.2.2 BPE分词器 45
2.2.3 WordPiece分词器 52
2.2.4 Unigram分词器 56
2.2.5 SentencePiece分词器 58
2.2.6 词表融合 62
2.3 大型语言模型的微调方法 63
2.3.1 前缀调优 63
2.3.2 提示调优 64
2.3.3 P-Tuning v2 65
2.3.4 LoRA 65
2.3.5 DyLoRA 66
2.3.6 AdaLoRA 67
2.3.7 QLoRA 67
2.3.8 QA-LoRA 68
2.3.9 LongLoRA 69
2.3.10 VeRA 69
2.3.11 S-LoRA 70
2.4 基于PEFT的LLaMA模型微调实战 71
2.4.1 项目介绍 71
2.4.2 数据预处理 71
2.4.3 模型微调 72
2.4.4 模型预测 77
2.5 本章小结 78
第3章 大型语言模型的人类偏好对齐 79
3.1 基于人类反馈的强化学习框架 79
3.2 前沿偏好对齐方法 84
3.2.1 RRHF 84
3.2.2 RLAIF 85
3.2.3 DPO 87
3.2.4 APO 89
3.3 基于DPO的偏好对齐实战 90
3.3.1 数据集介绍 90
3.3.2 TRL框架介绍 92
3.3.3 训练代码解析 93
3.4 本章小结 96
第4章 创建个人专属的ChatGPT—GPTs 97
4.1 GPTs初体验 97
4.2 GPTs的初阶使用 105
4.2.1 知识库的使用 105
4.2.2 内置插件的使用 108
4.2.3 知识库与内置插件的结合使用 111
4.3 GPTs的高阶使用 113
4.4 本章小结 122
第5章 大型语言模型SQL任务实战 123
5.1 公开数据集 123
5.1.1 英文公开数据集 123
5.1.2 中文公开数据集 128
5.2 主流方法 132
5.2.1 基于规则的方法 133
5.2.2 基于深度学习的方法 133
5.2.3 基于预训练语言模型的方法 136
5.2.4 基于大型语言模型的方法 136
5.3 Text2SQL任务实战 141
5.3.1 项目介绍 141
5.3.2 数据预处理 142
5.3.3 模型微调 147
5.3.4 模型预测 149
5.4 本章小结 150
第6章 大型语言模型的角色扮演应用 151
6.1 角色扮演 151
6.1.1 大型语言模型如何进行角色扮演 153
6.1.2 角色扮演数据的构造方法 155
6.1.3 大型语言模型角色扮演的能力评估 155
6.2 角色扮演实战测试 156
6.3 基于Baichuan的角色扮演模型微调 159
6.3.1 项目介绍 159
6.3.2 数据预处理 160
6.3.3 模型微调 164
6.3.4 模型预测 171
6.4 本章小结 175
第7章 大型语言模型的对话要素抽取应用 176
7.1 对话要素抽取 176
7.2 对话要素抽取实战测试 177
7.2.1 基于GPT-3.5 API进行对话要素抽取 178
7.2.2 基于Qwen-1.8B模型进行对话要素抽取 180
7.3 基于Qwen的对话要素抽取模型微调 183
7.3.1 项目介绍 183
7.3.2 数据预处理 183
7.3.3 模型微调 190
7.3.4 模型预测 198
7.4 本章小结 202
第8章 Agent应用开发 203
8.1 Agent概述 203
8.2 Agent的主要模块 205
8.3 Agent的行为决策机制 207
8.4 主流Agent 框架 211
8.4.1 LangChain框架 211
8.4.2 LlamaIndex框架 214
8.4.3 AutoGPT框架 215
8.4.4 AutoGen 框架 216
8.4.5 SuperAGI框架 219
8.5 本章小结 221
第9章 基于知识库的大型语言模型问答应用 222
9.1 基于知识库问答 222
9.2 向量数据库 224
9.2.1 文本的向量表征 225
9.2.2 向量的距离度量方法 228
9.2.3 常用的向量数据库 229
9.3 基于知识库的大型语言模型问答实战 231
9.3.1 BGE微调 231
9.3.2 基于ChatGLM3知识库答案生成任务的微调 238
9.3.3 基于Streamlit 的知识库答案应用搭建 245
9.4 本章小结 249
第10 章 使用LangChain 构建一个AutoGPT 250
10.1 AutoGPT 概述 250
10.2 LangChain 概述 253
10.3 使用LangChain 构建AutoGPT 254
10.3.1 构建 25410.3.2 规划和任务分解 255
10.3.3 输出解析 258
10.3.4 程序的核心AutoGPT类 261
10.3.5 工具能力配置 266
10.3.6 为Agent 配置记忆 269
10.4 运行AutoGPT 274
10.5 本章小结 277

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值