第一部分:奠定坚实的基础
一、理解基本概念
- 什么是AI与机器学习
AI是指计算机系统执行通常需要人类智能的任务的能力,比如视觉识别、语言翻译等。而机器学习则是实现AI的一种方法,它让计算机通过数据学习而不是明确编程来完成特定任务。了解这些基础知识有助于你建立起正确的认知框架,并激发进一步探索的兴趣。
- 深入认识深度学习
深度学习是机器学习的一个子集,它模仿人脑神经元的工作方式构建多层神经网络,以处理复杂的数据模式。它是当前大多数先进AI应用背后的核心技术,如图像识别、语音合成、自然语言处理等。掌握深度学习的基本原理,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)及其变种LSTM/GRU,将为你打开通往更高级别研究的大门。
二、强化数学基础
虽然听起来可能有些枯燥,但是扎实的数学功底对于理解和开发有效的机器学习算法至关重要。以下是几个关键领域的推荐:
线性代数:矩阵运算、向量空间理论等知识在表示和操作高维数据时非常有用。
概率论与统计学:用于描述不确定性以及评估模型性能的关键工具。
微积分:优化问题中必不可少的概念,例如梯度下降法。
可以通过在线课程或教材自学上述内容,也可以选择参加线下培训班进行系统学习。重要的是找到适合自己的学习方式,并坚持下去。
三、编程技能准备
Python因其简洁易读且拥有丰富的库支持而成为AI领域的首选编程语言。如果你之前没有编程经验,可以从学习Python开始,重点关注以下几个方面:
语法基础:变量定义、条件语句、循环结构等基本元素。
数据类型与结构:列表、字典、集合等容器类对象的操作。
函数与模块化编程:编写可重用代码片段的能力。
面向对象编程:理解类与实例之间的关系,学会设计合理的软件架构。
此外,熟悉至少一种流行的深度学习框架(如TensorFlow或PyTorch),这不仅能让你更快地上手实践项目,还能为未来的职业发展打下良好基础。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
第二部分:深入专研大模型
一、参与开源社区
加入GitHub上的活跃开源项目,如Hugging Face Transformers、BERT、GPT系列等,不仅能够接触到最新的研究成果和技术趋势,还可以与其他开发者交流心得、解决问题。贡献代码或文档改进都是很好的参与形式,既锻炼了自己的能力,也为日后求职积累了宝贵的实战经验。
二、阅读学术论文
订阅arXiv.org上的最新研究动态,特别是那些专注于大规模预训练模型的文章。虽然刚开始可能会感到吃力,但随着阅读量的增加,你会逐渐适应这种表达方式,并从中汲取灵感。同时,积极参加线上或线下的研讨会、讲座等活动,聆听专家们的见解,拓宽视野。
三、动手实践
理论学习固然重要,但只有真正动手做过之后才能深刻体会到其中的道理。尝试以下几种类型的项目:
经典案例复现:选取一个知名的大规模预训练模型,按照官方教程一步步搭建起来,直至能够准确再现其结果。
自定义任务解决:结合个人兴趣点提出一个实际问题,然后利用学到的知识去寻找解决方案。例如,建立一个简单的聊天机器人或者文本生成器。
竞赛挑战:报名参加Kaggle等平台举办的比赛,在限定时间内与其他参赛者竞争,检验自己的实力并发现不足之处。
第三部分:职业规划与发展
一、获取相关证书
尽管不是必须的,但在某些情况下获得认证可以为你的简历增色不少。目前市面上有许多针对不同层次人群提供的专业培训课程,如Google的Machine Learning Crash Course、Coursera上的DeepLearning Specialization等。完成学业后可以获得相应的结业证书,证明自己掌握了特定领域的知识和技能。
二、积累工作经验
除了继续深化专业知识外,积累实际的工作经验同样重要。可以通过实习、兼职等形式加入初创公司或大型企业的AI团队,参与到真实项目的开发过程中去。即使职位并非直接涉及大模型,只要有机会接触相关技术就值得珍惜。每一次经历都是一次成长的机会,它可以帮助你更好地理解市场需求和个人定位。
三、持续学习与自我提升
科技领域变化日新月异,保持终身学习的态度非常重要。定期回顾已掌握的知识,及时补充新的信息;关注行业动态,调整学习方向;勇于尝试新鲜事物,不怕失败。只有这样,才能在这个快速发展的行业中立于不败之地。
第四部分、通过一个案例来理解大模型是如何使用的。
一、从一句话敲开大模型的大门
你向大模型提问 “你是谁?”,然后大模型理解了你说的话,并给出对应的回答。
接下来,使用 API 模拟这个场景。
二、大模型 API 实现问答
选用月之暗面的 API 来实现问答。
如图所示,通过一个 API ,完成了智能回复。
如果将这个 API 套一个壳(图形界面),就是我们常见的大模型助手。
于是很多 App、Agent、智能助手,都可以通过这样一个形式的 API 进行套壳落地。
通过上面的介绍,至少对于大模型的使用有了一定的体感。
和大模型的交付形式,抽象成程序,就一个参数,不同的参数,输出的结果是不同的。
三、“不同的输入给出不同的输出”
列举有哪些大模型,但是输出的形式不同。一个表格,一个markdwon,如下所示:
大模型最终的展现形式,显然和我们的输入表达是紧密相关的。输入表达,在大模型中叫做 prompt。
月之暗面这么定义 Prompt:
对模型的输入也被称为“Prompt”。通常我们建议您提供明确的指令以及给出一些范例,来让模型能够完成既定的任务,设计 Prompt 本质上就是学会如何“训练”模型。moonshot-v1模型可以用于各种任务,包括内容或代码生成、摘要、对话、创意写作等。
市面上诞生了很多 Prompt 工程师。Prompt 对大模型十分重要。很多场景的优化,常常是通过 Prompt 的优化来提升效果的。
四、Prompt 优化策略
简单提供入门的两个优化策略。
优化策略 | 给定身份 |
制定身份法 |
|
示列 | 任务是:将 Map<Key,Value> 中的 Key提前出来 ,放入 []。 例如:{"a":"1"} 输出的是 [a] |
..... |
五、代码案例
搭建一个简单的代码案例
第一步:到月之暗面开发平台申请一个 key
https://platform.moonshot.cn/console/api-keys
有了这个 key ,就可以调用 API 。(学习阶段,申请一个免费的)
第二步:编写代码
如果熟悉 python ,那么将 key 替换成自己的,一个大模型语义能力通过几行就完成了。(月之暗面提官方提供的代码示例)
from openai import OpenAI
client = OpenAI(
api_key = "$MOONSHOT_API_KEY",
base_url = "https://api.moonshot.cn/v1",
)
completion = client.chat.completions.create(
model = "moonshot-v1-8k",
messages = [
{"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"},
{"role": "user", "content": "你好,我叫李雷,1+1等于多少?"}
],
temperature = 0.3,
)
print(completion.choices[0].message.content)
作者:uzong
链接:https://juejin.cn/post/7444467218070274058
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
如果使用 Java 代码,则封装一个 httpclient 就可以,或者使用 curl 命令也能实现访问
curl https://api.moonshot.cn/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $MOONSHOT_API_KEY" \
-d '{
"model": "moonshot-v1-8k",
"messages": [
{"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"},
{"role": "user", "content": "你好,我叫李雷,1+1等于多少?"}
],
"temperature": 0.3
}'
作者:uzong
链接:https://juejin.cn/post/7444467218070274058
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
代码实例就到此结束,感兴趣的自己可以进一步封装。
结语
由零基础成长为一名合格的大模型工程师并非一蹴而就的事情,但它绝对是一条充满乐趣与挑战的道路。以上提到的学习路径和职业规划建议只是为你提供了大致的方向指引,在具体实施过程中还需要根据自身情况进行适当调整。最重要的是保持好奇心和求知欲,勇敢面对困难,相信终有一天你会站在这个领域的前沿,成为一名出色的AI专家。祝愿你在追求梦想的路上取得圆满成功!
在大模型时代,我们如何有效的去学习大模型?
现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型各大场景实战案例
结语
【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈