字节开源高精度文档解析大模型Dolphin:轻量高效,性能超GPT4.1、Mistral-OCR!

字节跳动刚刚开源一款全新文档解析模型——Dolphin

与目前市面上各类大模型相比,这款轻量级模型不仅体积小、速度快,并且取得了令人惊艳的性能突破,解析效率提升近2倍

测试结果显示,Dolphin在文档解析任务上解析准确率超越了GPT-4.1、Claude3.5-Sonnet、Gemini2.5-pro、Qwen2.5-VL等通用多模态大模型,以及最近推出的号称最强OCR大模型的Mistral-OCR等垂类大模型。

图片

论文已被收录于ACL 2025,项目链接可见文末。

突破性的两阶段解析方法

文档图像解析解决方案可以分为两大流派:集成式方法以及端到端方法。

集成式方法在链路中组装多个专家模型,端到端方法则利用视觉语言模型通过自回归解码直接生成结构化结果。

而Dolphin采用了全新的**“先解析结构后解析内容”(analyze-then-parse)**两阶段范式:

图片

Dolphin遵循一种基于编码器-解码器Transformer架构的分析-解析范式
  • 第一阶段—文档布局解析:按照自然阅读顺序生成文档元素序列,即每个文档元素的类别及其坐标。这里的文档元素值得是标题、图表、表格、脚注等。
  • 第二阶段—元素内容解析:使用这些元素作为”锚点”,配合特定提示词实现并行内容识别,从而完成整页文档的内容提取。

这种创新架构一箭双雕,既避免了传统商用方案中多OCR专家模型级联带来的错误累积问题,又克服了通用多模态大模型易丢失版面结构信息、自回归解码效率低的痛点。

因为获取孤立的元素图像(例如表格、公式)及其标注比收集包含多种元素的完整文档页面更可行,Dolphin的元素解耦解析策略在数据收集方面提供了独特的优势。

更轻量、更高效

图片
Dolphin与先进VLMs在基准测试中的比较

对于流行的基准测试,Dolphin在多种页面级和元素级解析任务中达到了最先进的性能。

图片页面级文档解析的性能比较

尽管Dolphin具有轻量级架构(322M参数),但其性能优于基于集成的方法和更大的VLM。

“Plain Doc”代表仅包含文本内容的文档,而“Complex Doc”包括包含混合元素(表格、公式和图形)的文档。

对于纯文本文档,Dolphin在英文和中文测试集上分别达到了0.0114和0.0131的编辑距离,优于垂类的VLM如GOT(编辑距离为0.035和0.038)和通用VLM如GPT-4.1(编辑距离为0.0489和0.2549)。

在处理包含表格、公式、图像等混合元素的文档时,Dolphin达到了0.1283的编辑距离,优于所有基线

此外,凭借并行解析设计,Dolphin展示了显著的效率提升,达到了0.1729FPS,比最有效的基线(Mathpix,0.0944FPS)快近2倍。

图片
文本段落、公式和表格的元素级解析性能比较

对于文本段落解析,Dolphin在Fox-Block和Dolphin-Block测试集上都取得了具有竞争力的结果。

在公式识别方面,Dolphin在不同复杂度级别(SPE、SCE和CPE)上都展现出强大的能力,取得了与专业公式识别方法相当的具有竞争力的CDM分数。

对于表格解析,Dolphin在PubTabNet和PubTab1M基准测试上显示出有前景的结果,有效地捕捉了结构关系和单元格内容。

在文本段落、公式和表格上这些持续强劲的结果展示了Dolphin在基础识别任务中的具有竞争力的性能。

实际案例展示

下面通过几个实际案例,直观展示Dolphin的文档解析能力:

无论是多栏学术论文、复杂公式、中英表格,Dolphin都能精准识别、高效处理。

图片

Dolphin的页面级解析结果可视化
  • 左:第一阶段布局分析,包含预测的元素边界和阅读顺序。
  • 中:第二阶段特定元素的解析输出。
  • 右:最终以markdown格式渲染的文档。
图片
Dolphin在各种场景下的元素级解析演示

顶部行显示输入图像,底部行显示相应的识别结果。

  • 左:复杂布局中的文本段落解析。
  • 中:双语文本段落识别。
  • 右:复杂表格解析(显示渲染结果)。

图片

Dolphin的其他功能
  • 左:从给定的边界框区域中解析文本内容。
  • 右:文本识别结果,显示了检测到的文本行(在图像中可视化)及其内容。
    读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值