把排序数组转换为高度最小的二叉搜索树(LintCode)

介绍如何将排序数组高效转换成一棵高度最小的二叉搜索树,通过递归选取中间值作为根节点,确保树的平衡性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目来源:LintCode

原题地址:http://www.lintcode.com/zh-cn/problem/convert-sorted-array-to-binary-search-tree-with-minimal-height/

题目:

给一个排序数组(从小到大),将其转换为一棵高度最小的排序二叉树。

样例

给出数组 [1,2,3,4,5,6,7], 返回

     4
   /   \
  2     6
 / \    / \
1   3  5   7
挑战

可能有多个答案,返回任意一个即可

难度级别:
容易

思路分析:
这个题其实应该有多种思路,例如可以采用先建立二叉排序树,然后再进行二叉树平衡处理;
不过如果是这么做的话,感觉就比较麻烦了,而且二叉平衡树的建立如果没有经验的话,很难处理好的。

我这里的做法是,直接采用中间值来作为二叉树的根节点;将原数组分成左右均等或者相差一个数的两个新数组;
然后递归的对这两个新数组进行相同的处理,这样对于每一个根节点,其左右子树的高度相差绝对值不会超过1,
也就是满足了二叉平衡树的要求了。


实现代码:
/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution
{
public:
	/**
	* @param A: A sorted (increasing order) array
	* @return: A tree node
	*/
	TreeNode *sortedArrayToBST(vector<int> &A)
	{
		if (A.empty())
		{
			return NULL;
		}
		int start = 0, end = A.size() - 1;
		int mid = (start + end) / 2;
		TreeNode *Head = new TreeNode(A[mid]);
		Head->left = sortedArrayToBSTCore(A, start, mid - 1);
		Head->right = sortedArrayToBSTCore(A, mid + 1, end);
		return Head;
	}
	TreeNode *sortedArrayToBSTCore(vector<int> &A, int start, int end)
	{
		if (start > end)
		{
			return NULL;
		}
		int mid = (start + end) / 2;
		TreeNode *head = new TreeNode(A[mid]);
		head->left = sortedArrayToBSTCore(A, start, mid - 1);
		head->right = sortedArrayToBSTCore(A, mid + 1, end);
		return head;
	}
};



代码说明:
实现代码挺简单的,没啥特别的,需要注意的就是处理边界值,避免数组溢出。
将一个升序数组转换高度平衡的二叉搜索树,可以采用递归的方式来实现。 具体步骤如下: 1. 找到数组的中间元素,作为二叉搜索树的根节点。 2. 将数组分成左右两个子数组,左子数组中的元素都小于根节点,右子数组中的元素都大于根节点。 3. 递归地处理左右子数组,分别将它们转换为左右子树。 4. 将左右子树挂在根节点下,构成一棵完整的二叉搜索树。 以下是代码示例: ```cpp #include <iostream> #include <vector> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: TreeNode* sortedArrayToBST(vector<int>& nums) { return buildBST(nums, 0, nums.size() - 1); } private: TreeNode* buildBST(vector<int>& nums, int left, int right) { if (left > right) { return NULL; } int mid = (left + right) / 2; TreeNode* root = new TreeNode(nums[mid]); root->left = buildBST(nums, left, mid - 1); root->right = buildBST(nums, mid + 1, right); return root; } }; int main() { vector<int> nums = {1, 2, 3, 4, 5, 6, 7}; Solution solution; TreeNode* root = solution.sortedArrayToBST(nums); // 遍历打印二叉树 return 0; } ``` 在这个示例中,我们定义了一个 `Solution` 类,其中包含了一个 `sortedArrayToBST` 函数,用于将升序数组转换高度平衡的二叉搜索树。 我们在 `sortedArrayToBST` 函数中调用了 `buildBST` 函数,用于递归地构建二叉搜索树。`buildBST` 函数的参数中,`nums` 表示原始数组, `left` 和 `right` 表示当前处理的数组区间。 在 `buildBST` 函数中,首先判断当前区间是否为空,如果为空则返回 `NULL`。然后计算出当前区间的中间位置 `mid`,将 `nums[mid]` 作为根节点。再递归地处理左右子数组,分别将它们转换为左右子树。最后返回根节点,构成一棵完整的二叉搜索树。 最后,我们可以使用遍历的方式打印出生成的二叉搜索树,以验证其正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值